
Structuring Formal Requirements Specifications
for Reuse and Product Families

NAG-t-2242

Deliverable

Title: Final Report

WBS/Task: 2

Date: September 9, 2001

Grant

Numbo NAO-1-2242
Project Title: -S_tructuring F-_ffnal Requirements Specifications

for Reuse and Product Families

Contractor: University of Minnesota

Principal Investigator

Name:

Title:

Phone:

Fax:

Emaih

Dr. Mats P.E. Heimdahl

Associate Professor

(612) 625-2068

(612) 625-0572

heimdahl@cs.umn.edu

c_)

L._

C'd

C_

I

CO

I

C_

Structuring Formal Requirements Specifications

for Reuse and Product Families."

Final Report

Mats P.E. Heimdahl

(612)-625-2068

heimdahl@cs, umn.edu

Department of Computer Science and Engineering

University of Minnesota

4-192 EE/SC Building
200 Union Street S.E.

Minneapolis, Minnesota 55455

Abstract

In this project we have investigated how formal specifications should be structured to allow for

requirements reuse, product family engineering, and ease of requirements change. The contributions
of this work include (1) a requirements specification methodology specifically targeted for critical

avionics applications, (2) guidelines for how to structure state-based specifications to facilitate ease

of change and reuse, and (3) examples from the avionics domain demonstrating the proposed

approach.

Table of Contents

1 Introduction ... 7

1.1 Reading This Report ... 7

2 Project Overview .. 8

2.1 Literature Survey .. 8

2.2 Development of a Methodology ... 8

Appendix A - Drat_ Methodology .. 9

Appendix B - Jeffrey M. Thompson's Dissertation ... 11

1 Introduction

Incomplete, ambiguous, or rapidly changing requirements are routinely cited as one of the major

cost drivers for software development. In addition, in the domain of safety critical systems

researchers have found that requirements errors are more likely to impair safety than errors

introduced during design or implementation.

Using a formal notation to specify the requirements addresses most of the problems with

incompleteness and ambiguity. Languages based on finite state machines such as Statecharts,

SCR (Software Cost Reduction), SpecTRM (Specification Tools and Requirements

Methodology), and RSML (Requirements State Machine Language), have been successfully

used in a number of projects related to NASA's mission. These languages are easy to use, allow

automated verification of properties such as completeness and consistency, and support
execution and dynamic evaluation.

However, a formal requirements specification does not solve the problems incurred by rapidly

changing requirements. The specification must be structured in such a way that it is easy to

change and the impact of the changes is limited. Moreover, to reduce the cost of software

development the requirements specification should be structured in a way that allows for

requirements reuse and the development of product families. Few guidelines have been defined

describing how formal requirements specifications should be structured to achieve these

objectives. Those that do exist are inadequate and do not sufficiently address the tradeoffs

affecting the structure of a state-based specification.

In this project we have investigated how formal specifications should be structured to allow for

requirements reuse, product family engineering, and ease of requirements change. The

contributions of this work include (1) a requirements specification methodology specifically

targeted for critical avionics applications, (2) guidelines for how to structure state-based

specifications to facilitate ease of change and reuse, and (3) examples from the avionics domain

demonstrating the proposed approach.

1.1 Reading This Report

This report contains a short overview of the project as well as the product resulting from the

work--a draf_ methodology description. Since the work grew beyond the initial scope of the

project, we have also included a copy of a dissertation that resulted from this project.

Final Report Page 7 of 12

2 Project Overview

2.1 Literature Survey

To ensure that we did not overlook any important trends or duplicated work, we performed a

literature study covering the material relevant for this project. In particular, we investigated the

current state of the art with respect to requirements modeling and product families. This survey is

included as part of the methodology in Appending A as well as in the dissertation included as

Appendix B.

2.2 Development of a Methodology

A methodology consists of a set of strategies that make an approach work and the steps that must

be followed to apply that approach. None of the methodologies we investigated at the start of this

project, including SCR, RSML, SpecTRM, Statecharts, and object-oriented methods, adequately
addressed the issue relevant for this investigation, namely structuring for product family

engineering. Since no acceptable approach was found during the literature survey, we defined a
of the existingmethodology that addresses the issues by emphasizing the best strategies

approaches. A partial list of these strategies include:

• Making a clear distinction between the environment and the system.

• Stating requirements as constraints on the environment.

• Clearly relating the system and software requirements.

• Presenting requirements in a form that can be read by all stakeholders.

• Using executable requirements models to drive simulations of the user interface.

• Separating the essential requirements of the system from user interface requirements.

• Separating the essential requirements of the system from the hardware interface

requirements.

• Anticipating change and organizing the requirements to minimize the effects of change.

These strategies were used to guide the development of the methodology. The methodology

defines both the strategies and the set of steps to be followed in developing the requirements

model. The final draft of the methodology is included in Appendix A and constitutes the final

deliverable in this project.

Final Report Page 8 of 12

Appendix A - Draft Methodology

Final Report Page 9 of 12

FinalReport Page10of 12

Product Families, Formality, and Reuse:

A Guide to the FORMpcs Method

Jeffrey M. Thompson

Mats P.E. Heimdahl

Department of Computer Science and Engineering

University of Minnesota

Draft produced on September 29, 2002

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Contents

Acknowledgements xi

Introduction 1

1.1 Purpose of this Guide Book 3

1.2 Intended Audience 3

1.3 Scope of the Method and Guidebook 4

Background Material

2 Problems with Requirements

4

5

2.1 Integrating Systems and Software Engineering 5

2.2 Volatility of Requirements 5

2.3 Legacy Systems 6

2.4 Planning For Reuse 6

2.5 Satisfying All Stakeholders 6

2.6 Identifying the Customer's True Needs 7

2.7 Avoiding Implementation Bias 7

2.8 Support for Automated Tools 7

Current Limitations 9

3.1 Natural Language Requirements 9

3.2 Formal Models 10

3.2.1 The Early Work 11

3.2.2 The State-based Notations 11

3.2.3 The Role of Object Orientation: 13

3.3 Prototyping 14

3.4 Product Family Engineering 15

3.5 Summary 16

Ul

iv CONTENTS

4 System Model

5

17

4.1 Process Control Systems 17

4.2 The Four-Variable Model and CoRE 20

4.2.1 Discussion 23

4.3 The WRSPM Model and REVEAL 24

4.4 The FORMpcs More Variable Model 28

Product-Line Engineering Concepts 33
5.1 n-Dimensional and Hierarchical Product Lines 34

5.1.1 n-Dimensional product families 34

5.1.2 Hierarchical product families 35

5.2 Structuring Families 36

5.3 Addressing existing issues 38

5.4 Benefits 40

Methodology Praticum 42

Methodology at a Glance

6.1 Idealized FORIVlpcs Process

6.1.1

6.1.2

6.1.3

6.1.4

6.1.5

6.1.6

6.2

43

43

Commonality Analysis 44
Environmental Variables 44

Initial Structure 44

Draft Specification 45

Detailed Requirements 45

Sensors and Actuators 46

Normal Iteration Among the Phases 46

6.2.1

6.2.2

6.2.3

6.2.4

Constructing Partial Specifications 46

Monitored and Controlled quantities 46

Draft Requirements and Requirements Structure 47

Detailed Requirements and Prior Phases 47

7 Commonality Analyis 49
7.1 Goals 49

7.2 Entrance Criteria 50

7.3 Activities 50

7.3.1 Define the Top-Level Family 50

7.3.2 Initial Commonalities and Variabilities 51

7.3.3 Identify Family Structure 55
7.3.4 Elaborate Variabilities and Commonalities 57

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

CONTENTS v

7.3.5 Definethe DecisionModel 58
7.4 EvaluationCriteria 59
7.5 Exit Criteria 60

Environmental Variables 61
8.1 Goals....................................... 61
8.2 EntranceCriteria 62
8.3 Activities 62

8.3.1 IdentifyingControlled Variables 62

8.3.2 Identifying Monitored Variables 63
8.3.3 Define the Variables 64

8.3.4 Define Relationships Among Variables 65
8.4 Evaluation Criteria 68

8.5 Exit Criteria 69

Initial Structure 71

9.1 Goals 71

9.2 Entrance Criteria 71

9.3 Activities 72

9.3.1 Define Dependancy Relationships 72

9.3.2 Define Modules and Interfaces 72

9.4 Evaluation Criteria 73

9.5 Exit Criteria 73

10 Draft Requirements
10.1 Goals

10.2

10.3

10.4

10.5

Entrance Criteria

Activities

10.3.1 Specify Each Controlled Variable

10.3.2 Identify Potential Modes

10.3.3 Using Tools to Visualize the Preliminary Behavoral Specification . .

75

75

76

76

76

79

81

Evaluation Criteria 82

Exit Criteria 83

11 Detailed Requirements 85
11.1 Goals 85

11.2 Entrance Criteria 85

11.3 Activities 86

11.3.1 Specify Initialization and Shutdown Activities 86

11.3.2 Specify Error Handling 87

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

vi CONTENTS

11.3.3DegradedModesof Functionality 87
11.3.4SpecifyTolerancesandHandleViolations............... 89

11.4EvaluationCriteria 90
11.5Exit Criteria 90

12 Sensors and Actuators 91

12.1 Goals 91

12.2 Entrance Criteria 91

12.3 Activities 91

12.3.1 Identify and Describe the Sensors and Actuators 92
12.3.2 Outline the IN -1 and OUT -1 Relations 92

12.3.3 Specify the Normal-Case 94

12.3.4 Specify Detailed SOFT Relation 95
12.4 Evaluation Criteria 95

12.5 Exit Criteria 96

Supplemental Material

A The

A.1

A.2

A.3

B The ASW in RSML -e- Phase 2

C The ASW in RSML -e- Phase 3

D The ASW in RSML-% Phase 4

E The ASW in RSML -_- Phase 5

F The ASW in RSML -_- Phase 6

References

Index

96

ASW in RSML -e- Phase 1 97

Commonalities and Variabilities for the ASW 97

Structure and Members of the ASW Family 101
Decision Model for the ASW 103

105

111

117

129

147

171

175

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

List of Figures

3.1 A simple product family 15

4.1 A basic process-control model 18

4.2 The four-variable model 21

4.3 The world, requirements, specification, program, and machine (WRSPM)
model 25

4.4 The FORMpcs system model adapted from [48, 59] 29
4.5 Refining REQ to SOFT 31

5.1 A simple product family 34

5.2 FGS product family covering flying craft 35

5.3 Hierarchical decomposition and subset structure 36
5.4 Abstract verses non-abstract families 37

5.5 Set intersection and non-hierarchical structure 38

5.6 Set representation of a near-commonality 39

5.7 Cost-benefit of the FGS Family 41

7.1 The ASW family structure visualized in 2 dimensions 56
7.2 The structure of the Altitude Dimension for the ASW 57

7.3 A tabular representation of the ASW family decision model 59

8.1 The CON_DOI variable in Phase 2 of the methodology 66

8.2 The MON_Altitute variable in Phase 2 of the methodology 67

8.3 The System Context Diagram for the ASW in this Phase 68

9.1 Module Defined to threshold altitude 74

A.1 The ASW family structure visualized in 2 dimensions 102
A.2 The structure of the Altitude Dimension for the ASW 102

A.3 A tabular representation of the ASW family decision model 103

vii

viii LIST OF FIGURES

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

List of Tables

ix

x LIST OF TABLES

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Acknowledgements

The authors wish to thank Dr. Steven P. Miller from the Advanced Technology Center

at Rockwell Collins, Inc, Cedar Rapids, Iowa. Dr. Miller provided the initial outline of a

methodology that initiated this work and has been instrumental in the evolution of our

thinking. Much of the material in Chapters 1 and 2 was contributed by Dr. Miller in the

early stages of this project. His contributions, feedback, a_ld knowledge of the domain are
deeply appreciated.

xi

xii CHAPTER0. ACKNOWLEDGEMENTS

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 1

Introduction

Incomplete, ambiguous, or rapidly changing requirements are known to have a profound

impact on the quality and cost of software development. Fred Brooks states the problem

succinctly in [5]

The hardest single part of building a software system is deciding precisely

what to build. No other part of the conceptual work is as difficult as establishing

the delailed technical requirements...No other part of the work so cripples the

resulting system if done wrong. No other part is as difficult to rectify later.

Studies have shown that the majority of software development errors are made during

requirements analysis, and that most of these errors are not found until the later phases

of a project. Other studies have shown that due to the amount of rework that has to be

done, the cost of fixing a requirements error grows dramatically the later it is corrected

[4],[7],[29],[24]. In one well-known study conducted at TRW, it was found that it costs ten

times as much to correct a requirements error during unit testing than during requirements

analysis. Correcting a requirements error after a product had been deployed increased the

cost by 100 to 200 times [4]. Moreover, requirements errors are often the most serious errors.

Investigators focusing on safety-critical systems have found that requirements errors are

most likely to affect the safety of embedded system than errors introduced during design

or implementation [16], [19].

The need for better methods and tools for requirements analysis has long been cited

as one of industry's primary needs, for example, in 1990, Rockwell Collins Inc. identified

improving requirements capture as its highest priority to the Software Productivity Con-

sortium, stating that "requirements are incomplete, misunderstood, poorly defined, and

change in ways that are difficult to manage" [8].

Perhaps even more importantly, solving the requirements problem is an essential step in

solving many other software development problems. The disjunction between systems and

2 CHAPTER1. INTRODUCTION

softwareengineering,oftencitedasa majorcostin thedevelopmentof avionicssystems,
is preciselya problemin requirementsallocationandtranslation.Softwareverificationis
widelyrecognizedasoneof thelargestcostsindevelopingsafety-criticalsystems,but most
of theremainingwaysof reducingverificationcosts,suchasautomatingthetestingprocess
or automaticgenerationof testcases,requireformalrequirementsanddesignmodels.Out-
sourcingsoftwaredevelopmenthasbeenproposedasawayof reducingdevelopmentcosts,
but this is impracticaluntil weareableto generateprecise,readable,and unambiguous
specificationsof the requirements--requirementsthat can thenbeusedasthe basisfor
out-sourcing.

Thisdocumentdescribesthe FORMpcsrequiremetnsdevelopmentmethodfor creat-
ing modelsof subsystemandsoftwarerequirementsthat areprecise,readableby a wide
audience,androbustin the faceof change.Themethodologyintegratesthe perspectives
of systemand softwareengineering,supportsthe conceptof productfamilyengineering,
andhelpsto identifyoversightsandinconsistenciesearlyin the lifecycle.Whilestrongly
influencedbyCoRE[8],[9], [10],SCR[14],andRSML[13],[15],themethodologyis largely
notationindependentandis meantto becompatiblewith anumberof commerciallyavail-
abletoolsandnotations,includingmanyof theemergingobject-orientednotations.

FORMpcs.is a coherentrequirementsdevelopmentmethodthat aimsto achievethe
following:

SeparateSystem Requirements from Software Requirements: Confusionoverwhat
constitutessystem requirements versus sub-systems or software requirements is a

source of problems in requirements modeling. If the initial requirements are mod-
eled at the wrong level of abstraction, changes can be very difficult to accomplish.

FORMpcs defines the distinction between these levels of abstraction and provides

guidelines on how to refine the system requirements to software requirements.

Provide Guidance: FORMpcs provides explicit steps on how to move from the initial

informal requirements, through product family engineering, to a rigorous statement

of the required software behavior. The steps are developed to provide guidance at a
level suitable for industrial application and this document could serve as a text in a

requirements modeling course in the critical systems domain.

Integrate Product Family Engineering and Formal Modeling: Although FORMpcs is

intended to be notation and language independent, the primary target notation for

the work is some formal modeling language (such as RSML -_, SCR, or VDM-SL).

FORMpcs provide guidelines on how the ideas in product family engineering can be

integrated into these formal modeling techniques. The aim is to achieve flexible reuse

in the requirements domain as well as in the code domain.

Avoid Premature Design: FORMpcs allows the analyst to model the desired behavior

of the proposed system at increasingly refined levels of abstraction. These models

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

1.1. PURPOSEOF THISGUIDE BOOK 3

capturethe desiredrelationshipbetweenthevariousvariablesin the system.This
allowsan analystto specifywhat the softwareshalldo with little introductionof
(software)designdetails.

Include Continual Requirements Evaluation: To allow an analyst to evaluate the

proposed behavior of a new system, FORMpcs advocates modeling in an executable

language and continual dynamic evaluation of the model through simulation--a de-

velopment approach we call specification based prototyping. This evaluation will allow

early customer involvement, enhance requirements elimination, and provide better

risk management as compared to not using executable models.

1.1 Purpose of this Guide Book

this method guide provides a detailed set of guidelines on how to apply the FORMpcs ap-

praoch to requirement modeling. It is intended both as a reference guide for experienced

analysts and a self-study guide for the inexperienced analyst. The guide addressed the

following:

• An overview of common problems in requirements modeling.

An overview of tile fundamentals of requirements; what is a requirement and how do

we separate system requirements from software requirements. We provide an short

description of the most influential related work and present the FORMpcs view of
this issue.

• A new way of viewing product families, their commonalities, and their variabilities.

Guidelines and step-by-step instructions on how to scope a system, structure the

requirements, and refine the system requirements to software requirements.

A process for developing requirements for control applications.

• Illustration of the technique through a running example and two completed require-
ments models.

1.2 Intended Audience

This guidebook is intended for the practicing engineer that is developing requirements for

various control oriented applications. Our primary concern is safety critical applications,

but the techniques are applicable to all types of control systems.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

4 CHAPTER1. INTRODUCTION

Weassumethereaderhasexperiencein thedevelopmentof controlapplications,espe-
ciallythecriticalissuesinvolvingtimeandinteraction with hardware, to full appreciate the
material covered in this guide. In addition, we assume familiarity with finite state machines,

sets, and Boolean expressions. Any computer science textbook on discrete mathematics

will serve as an appropriate reference for the reader unfamiliar with these topics.
The notation used in the running example (RSML -_) will not be fully described in this

report--detailed discussions of RSML -_ are readily available in, for example, [58, 60, 61]

and a formal description of the language is available in [64].

1.3 Scope of the Method and Guidebook

The FORMpcs covers modeling of the required behavior of control systems. It addresses

the identification of the system boundary, identification of commonalities and variabilities

for product family engineering purposes, and the structuring of the requirements models.

Although the thinking presented in this guide is widely applicable, it is mostly appli-

cable to systems where it is intuitive to think of the software as controlling some physical

system, that is, a system where the software is responsible for monitoring changes in the

environment (using sensors) and effecting the environment through control commands (us-

ing some actuators). Naturally, one can view organizations as physical systems and much

of tile thinking could be extended to apply in the information systems domain.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 2

The Problems with Requirements

In developing a methodology for specifying and modeling requirements, there are countless

choices that must be made. These choices should be made to solve the most important

problems faced by system developers. This section discusses the most important issues in

requirements specification and modeling that arise in industrial use. Every methodology

choice should be traceable back to one of these issues. To be successful, a methodology
must address all of these issues.

2.1 Integrating Systems and Software Engineering

System and software requirements are inextricably intertwined. Unfortunately, systems

and software engineers often use different paradigms, different notations, and have different

areas of expertise. Since the system engineers usually work more closely with the customer,

this mismatch can cause discrepancies to be found late in the program, possibly even

after delivery. In many cases, even the format and level of detail of the requirements are

not agreed upon. This can lead to an expensive and error prone process as the system

requirements are translated or expanded into tile form needed by the software engineers.

This difference in paradigms can also lead to an incorrect perception of the cost of change.

Systems engineers often make what seem to be very simple changes without appreciating

the full cost of implementing those changes in software.

2.2 Volatility of Requirements

Few things cause more havoc oil a software project than constantly changing requirements,

yet the requirements almost always change. Requirements change due to a variety of

reasons, including changing customer expectations, not understanding what the customer

wanted in the first place, changing system architectures due to a lack of good systems

6 CHAPTER2. PROBLEMSWITH REQUIREMENTS

engineeringpractices,andchangingthehardwareinterfacesto thesoftware.Requirements
mayevenchangedueto competitionbetweenvendorsthat impactthescheduleor scope
of ongoingprojects.

2.3 Legacy Systems

Legacy systems are both one of a company's greatest assets and one of their greatest

liabilities. During maintenance, requirements changes must be written, implemented, and

verified. Unfortunately, legacy systems are usually based on textual requirements and are
not structured so that a new method or notation can be easily introduced. Compounding

the problem, the cost of modeling requirements may appear so great as to not justify

the benefits, particularly if the project manager has not seen requirements models used

on other projects. Even new projects are usually patterned after existing systems. As a

result, determining how a project can migrate from its current practices to a new method

and system architecture can be a major hurdle.

2.4 Planning For Reuse

Closely related to the issue of legacy systems is that of planning for reuse. In today's

competitive environment, companies tend to make variations of the same product over

and over. A significant cost of each such product is defining its requirements and ensur-

ing that they meet the customers needs. While the requirements of each such product

may appear to vary widely, the essential behavior of these systems are largely the same.

Unfortunately, most methods and notations for requirements specifications do not provide

guidance on how to reuse common portions of the requirements and how to mininfize the

cost of incorporating changes from one product to the next.

2.5 Satisfying All Stakeholders

Software requirements have to meet the needs of a diverse set of stakeholders, including but
not limited to the customer, end users, program management, systems engineers, software

engineers, hardware engineers, test engineers, and regulatory agencies. Ttmy must be clear

enough that end users can understand them, yet complete and precise enough that the

software engineers can implement the correct system and develop a comprehensive set of

test cases. It is very difficult for one notation to meet all these needs. Often, the solution

is to produce a different presentation for each audience. However, this introduces a new

problem of maintaining consistency between the various presentations.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

2.6. IDENTIFYING THE CUSTOMER'S TRUE NEEDS 7

2.6 Identifying the Customer's True Needs

Software requirements seldom specify the system actually needed by the customer. They

are invariably incomplete, incorrect, and inconsistent. This occurs for a variety of reasons.

The customer usually does not have a precise understanding of the system they want. The

requirements for the software may not be complete until well into the project, so design may

have to proceed with incomplete requirements to meet schedule. The level of detail needed

to fully specify the software is seldom appreciated, so requirements are usually incomplete.

Requirements are usually specified in English, which is notorious for being ambiguous. It is

also very difficult to check an informal English specification for omissions, inconsistencies,

and errors. Finally, there are normally so many requirements that they can easily contain

inconsistencies that don't surface until design or implementation. Unfortunately, current

tools for requirements capture do little to help identify these errors.

2.7 Avoiding Implementation Bias

At the same time, it is also important to avoid over-specification of the requirements, in-

troducing design and implementation issues. Over-specification constrains the designers of

the software, preventing them from using their expertise to make choices that would result

in a better system. It also makes it difficult to determine what part of the requirements can

be changed once the product is fielded in order to meet new demands and constraints. The

reason that implementation bias creeps into design is that most methods fail to distinguish

clearly between requirements and high level design. As a result, there is a need for good

criteria for deciding when the requirements have been 'adequately specified.

2.8 Support for Automated Tools

Automated tools are not essential to address the issues raised above. In fact, a completely

manual method that addresses these issues will produce better results than an automated

method that does not. However, automated tools can be of immense value in keeping a

requirements model consistent, checking for certain forms of errors, generating test cases,

and producing different view of the model. Executable models, when combined with a

mock-up of the system and user interfaces, can be invaluable in validating the requirements

with the customer. For all of these reasons, it is important that a method be supported

by automated tools.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

8 CHAPTER 2. PROBLEMS WITH REQUIREMENTS

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 3

Limitations with Current Approaches

Surprisingly, methods and tools for requirements modeling and analysis are nmch less

mature than those available for the later stages of coding and design. Requirements have

traditionally been stated as English statements, and requirements analysis is often limited

to informal inspections, tracing between system, software, and hardware requirements,

and tracing between so[tware requirements, design, code, and tests. However, English

specifications are infamous for being ambiguous, incomplete, incorrect, and inconsistent. If

we are lucky, these problems are found at considerable cost during design, implementation,

or testing. In this chapter we provide a short overview of the state of the art in requirements

specification and modeling, and point out the limitations.

3.1 Natural Language Requirements

The overwhelmingly most popular language for requirements capture is natural language

(for example, English). Natural language has many advantages.

Flexible: A natural language specifications is infinitely flexible and can be used to express

the requirements for essentially any system. Natural language is not subject to the

arbitrary modeling restrictions more formal notations impose. Natural language can

be sued to capture both the intended behavior of a proposed system as well as all

non-functional requirements that can often not be captured formally (for example,

maintainability, scalability, etc.).

Universally understandable: Natural language is universally understood by the devel-

opment teams and no extra training is needed for a team to understand and use a

natural language requirements document.

Easily accepted: Natural language requirements are the accepted practice in industry

10 CHAPTER3. CURRENTLIMITATIONS

and thereis little or no resistanceintroducingnatural languagemsa requirements
languageintoanorganizationwith a non-existingrequirementsprocess.

Naturally,therearemanydisadvantageswith natural languagedocuments--theyare
notoriousfor beingambiguous,incomplete,poorlyorganized,andgenerallyverylargeand
cumbersometo read.

Ambiguous: Naturallanguageis inherentlyambiguousandthemeaningofa naturallan-
guagestatementis alwaysopento multipleinterpretations.This canbesomewhat
alleviatedby usinga restrictedandwelldefinedsubsetof the languagefor require-
mentsdefinition.Thisdoes,however,notsolvethis problemto a largeextent.

Incomplete: Wemakea distinctionbetweeninternalandexternalcompleteness.Internal
completenessmeansthat wehavecoveredall aspectsof the casesthe requirements
address,that is, if wehavecoveredwhat to do in caseconditionC holds, we also

have to cover what to do if C does not hold. External completeness means we have

identified all the relevant customer requirements. Naturally, external completeness is

nmch harder to achieve. In a natural language requirements document, both notions

of completeness have to be assured manually through inspections--a very difficult

task. Consequently, natural language requirements are typically both internally and
externally incomplete.

Large and Un-organized: these properties are not inherent in natural language require-

ments documents--they just seem to become large and poorly organized over time.

Well written natural language requirements do not suffer from these problems. Most

natural language requirements documents, however, are not well written--they typ-

ically treat the document as a combination of requirements, design, users manual,

and tutorial. Consequently, the document grows out of control and becomes basically

useless as a requirements document.

3.2 Formal Models

A better approach is to refine the English statement of the requirements into a precise

model that can be executed. Requirements models are written in notations specifically

developed to make requirements readable and mathematically precise, such as SCR [14],

RSML [15], SpecTRM [18], Statecharts [12], and RSML-% Creating models based on

these notations have been shown to find a wealth of errors in textual specifications[13],[21].

Moreover, such models can be connected to a mock-up of the user interface and executed

with tile customer in tile same way as a simulation, or some tools also support "hardware-

in-the-loop" simulations, for example, the NIMBUS environment for RSML-% In the best

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

3.2. FORMALMODELS 11

approaches,the underlyingnotationhasbeencarefullydesignedto supportautomated
analyses.Thesemakepossibleavarietyof consistencyandcompletenesschecksthat find
manyerrors,aswellasthe ability to checkfor propertiesspecificto theapplicationbeing
modeled.Finally,therequirementsmodelitselfbecomesadetailedstatementofthedesired
behavior.This enhancesdesignand testing,and makesit far morefeasibleto outsource
thesoftwaredevelopment.

3.2.1 The Early Work

Early work in this area resulted in a collection of notations collectively calls executable spec-

ification languages. An executable specification language is a formally well defined, very

high-level specialized programming language. Most executable specification languages are

intended to play multiple roles in the software development process. For instance, lan-

guages such as PAISLey [65], ASLAN [4], and REFINE [1] are intended to replace require-

ments specifications, design specifications, and, in some instances, implementation code.

Executable specification languages have achieved some success and have been applied to

industrial size projects. Many languages have elaborate tool support and facilitate refine-

ment of a high-level specification into more detailed design descriptions or implementation
code.

Nevertheless, current executable specification languages have several drawbacks. Most

importantly, the syntax and semantics are close to traditional programming languages.

Therefore, they currently do not provide the level of abstraction and readability necessary

for a requirements notation [15, 16].

3.2.2 The State-based Notations

Notable exceptions to the first generation of executable specificaiton languages are a collec-

tion of state-based notations. Statecharts [20, 21], SCR (Software Cost Reduction) [26, 27],
and tile RSML [42], are very high-level and provide excellent support for inspections since

they are relatively easy to use and understand for all stakeholders in a specification ef-

fort. These languages allow automated verification of properties such as completeness and

consistency [22, 26], and efforts are underway to model check state-based specifications of

large software systems [3, 12].

Software Cost reduction--SCR: SCR is a research prototype created by tile Naval

Research Laboratory [14]. Based on Parnas's four-variable model [27] (discussed in detail

in Chapter XX), SCR specifies a zero-time, black-box model of the system, effectively

defining a transform function from the inputs to the outputs. There is no notion of sending

or receiving messages or events in SCR. Instead, communication between components

is based on change events (a change in value of a component) and simple references to

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

12 CHAPTER 3. CURRENT LIMITATIONS

variables. This discourages the introduction of implementation bias into the requirements

(see the discussion of RSML and SpecTRM below). While SCR supports an impressive

array of automated analyses, the tool set itself is not ready for industrial use except on

small pilots. Also, SCR has limited mechanisms for organizing a model into parts that are

likely to change together. This makes it difficult to manage requirements volatility and

plan for change and reuse of the model.

Requirements State Machine Language--RMSL: RSML is also a research proto-

type produced by the Nancy Leveson's group at the University of California at Irvine (later

moved to the University of Washington) [15]. RSML was used to specify TCAS-II and this

specification was ultimately adopted by the FAA as the official specification for TCAS-II.

RSML was heavily influenced by both Statecharts and SCR, and makes heavy use of inter-
nal broadcast events for communication between components. In the course of developing

tile TCAS-II specification, Leveson's group discovered that their most common source of

errors was this dependence on internal broadcast [18]. In effect, the specifiers were lured

into creating overly complex models that contained implementation bias. To address this
concern, they have eliminated the use of internal broadcast events in favor of the change

events found in SCR. The new language and tool set is be released shortly under the name

SpecTRM by the Safeware Engineering Corporation [18].

Statecharts: One of the most widely known requirements modeling notations is Stat-
echarts. A commercial version of Statecharts is available in the STATEMATE tool [12],

but it is based on a functional decomposition paradigm that., besides nmning counter to

tile trend towards object orientation among software engineers, also makes it more difficult
to extend models, minimize the cost of requirements volatility, and plan for change and

reuse. Like RSML, Statecharts makes extensive use of internal broadcast events, rather

than change events, for communication between components. The complexity and richness
of the notation also makes it difficult to analyze STATEMATE models with automated

tools.

RSML Without Events--RSML-_: Initial experiences with RSML (see above) were

a success and the language was well-liked by users, engineers, and computer scientists.

The explicit event propagation mechanism (shared with Statecharts) , however, was a

major source of errors and misconceptions [41]. Therefore, as an evolution, researchers
eliminated the events from RSML and ordered the computation based solely on the data

dependencies of the specification entities. Tile resulting language, RSML -e, has a fully

formal semantics [64] and interfaces for the specification of inter-component communica-

tion [23]. RSML -_ is a cousin to SpecTRM-RL (see above) described in [41] in that they
share similar semantics but the syntax is substantially different. RSML -_ has a fully for-

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

3.2. FORMALMODELS 13

mal semanticsandissupportedwith theNIMBUSenvironment.TheNIMBUSenvironment
is basedon theideasthat (1) tile engineerswouldlike to haveanexecutablespecification
of the systemearlyin theprojectand (2) asthespecificationis refinedit is desirableto
integrateit with moredetailedmodelsof theenvironment.

Other Approaches: In additionto thesetools,anumberof designmodelingtoolshave
appearedon the market,suchas ObjecTime,Object Geode,SCADE,and Rhapsody.

While many of these tools do a fine job of modeling software designs, there are problems

with using them to model requirements. Since they are intended as design tools, they

blur the distinction between requirements and design, force implementation bias into the

requirements, and obscure the requirements with design artifacts.

Unfortunately, there are no clear front runners in the list described above. Choosing

between commercially available tools emphasizes the importance of first identifying the

issues to be addressed, then defining a methodology to be followed in developing the

requirements. Tools can then be selected or developed based on their ability to support the

methodology. Unfortunately, there are also few good methods for requirements modeling.

The CoRE method from the Software Productivity Consortium is one of the most complete

methods available [8], [9], [10], but SPC is not evolving the method further and provides
only limited support for it. SCR is based on the same methodology as CORE, but a

definitive description of the methodology does not exist. While RSML has been very

successfully practiced by its originators, they have not published a full description of the

methodology they followed in using RSML. A similar criticism can be leveled against

SpecTRM and RSML -e also--they have been language and tool oriented, but method

support has been lacking.

3.2.3 The Role of Object Orientation:

Recently, object oriented methods have received a great deal of attention. In particular,

the Unified Modeling Language (UML) is gaining considerable acceptance in industry.

On the surface, these notations appear similar to languages such as SCR and RSML.

However, they all currently lack a precise semantics. As a result, users may interpret the

same specification in very different ways and tool vendors are free to provide different

interpretations with their tools. Also, most of these notations were not developed as

requirements inodeling languages. As a result, they include constructs that should not be

used in modeling requirements, lack some constructs that are needed, and seldom come

with a sound methodology for specifying requirements. The attraction of such notations

is their widespread appeal to industry and the promise of commercially available tools.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

14 CHAPTER3. CURRENTLIMITATIONS

3.3 Prototyping

A common approach to finding requirements errors sooner is to create a rapid prototype

of the system before starting the design phase. Besides flushing out many oversights, this

provides a simulation that can be explored with the customers to ensure their needs are

completely understood. The disadvantage is that simulations can be expensive to create,

often model only a portion of the behavior, and are usually discarded once the actual

product is developed.

There are two main approaches to prototyping. One approach is to develop a draft

implementation to learn more about the requirements, throw the prototype away, and then

develop production quality code based on the experiences from the prototyping effort. The

other approach is to develop a high quality system from the start and then evolve the

prototype over time. Unfortunately, there are problems with both approaches.

The most common problem with throw away prototyping is managerial, many projects

start developing a throw away prototype that is later, in a futile attempt to save time,
evolved and delivered as a production system. This misuse of a throw-away prototype

inevitably leads to unstructured and difficult to maintain systems.

Dedicated prototyping languages have been developed to support evolutionary proto-

typing [36, 46]. These languages simplify the prototyping effort by supporting execution

of partial models and providing default behavior for under-specified parts of the software.

Although prototyping languages have achieved some initial success, it is not clear that

they provide significant advantages over traditional high-level programming languages.

Evolutionary prototyping often lead to unstructured and diffficult to maintain systems.

Furthermore, incremental changes to the prototype may not be captured in the require-

ments specification and design documentation which leads to inconsistent documentation

and a maintenance nightmare.

Software prototypes have been successflflly used for certain classes of systems, for ex-

ample, human-machine interfaces and information systems. However, their success in

process-control systems development has been limited [13]. Clearly, a discussion of ev-

ery other prototyping technique is beyond the scope of this paper. Nevertheless, most

work in prototyping is, in our opinion, too close to design and ixnplementation or is not

suitable to the problem domain of safety-critical systems.

Notable examples of work in prototyping include PSDL [36, 45] and Rapide [43, 44].
PSDL is based on reusable libraries of Ada modules which can be used to animate the

prototype. Nevertheless, it seems that this approach would preclude execution until a

fairly detailed specification was developed. Rapide is a useful prototyping system, but it

does not have the capability to integrate as easily with other tools that we desired. In

addition, Rapide's scope is too broad for our needs; we wanted a tool-set that was focused

on the challenges presented by process-control systems.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

3.4. PRODUCTFAMILYENGINEERING 15

Bou_lne_ _ the N! are d_ermined

_-- by the Comr_llbol

Lndiv_lual f_r_Jly mornbers wee

disbnguqlhed Irom one anoth_ by

the wlue$ of Ihe varlabil_u

Figure 3.1: A simple product family

3.4 Product Family Engineering

The notion of a product family was introduced by David Parnas in [51]. According to

Parnas, it is desirable to study a group of programs as a whole whenever the programs

share extensive commonalities. Parnas observed that often programmers would create new

programs by modifying existing programs. This process usually involved a reverse step

where parts of the working program were discarded. Furthermore, the new program was

sometimes crippled by design assumptions made for the original program which did not

apply to the new program. Thus, Parnas postulated that it would better to start out by

defining what was common about all such programs and successively refining the design

until you had working programs as the leaves of a tree structure, with nodes within the

tree representing the various design decisions.

Batory and O'Mally [5] discussed how to reuse large portions of a system based on

breaking it into components and introduced a simple language for describing the compo-

nents and their composition. Gomma [18] discusses using domain modeling [56] to create a

centralized library of components which are then used by a generation facility to produce

the target application.

Weiss and Ardis [63, 2] developed the FAST (Family-oriented Abstraction, Specification

and Translation) process that integrates the above with specialized languages [49, 6] for

each domain. A similar process is mentioned by Campbell et al. in [11, 10] and also by

Lam [39, 38]. Tile differences between these works are primarily in the sort of artifacts

produced by domain engineering.

The commonality analysis [62] is a central feature of product-line engineering. This is
tile document that notes all the commonalities, i.e., features which are present in all systems

in the domain, and variabilities, i.e., features which distinguish the different members of

the domain. The commonality analysis defines the requirements for the product line.

One way to view a product family is as a set, where the boundaries of the set are

determined by the commonalities, and the individual members of the set are distinguished

by the values of their variabilities (Figure 3.1). As the figure demonstrates, it is entirely

possible that some members of the family may theoretically exist but not yet be built

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

16 CHAPTER 3. CURRENT LIMITATIONS

(shown in gray). Furthermore, the family may be undefined at some points within the

boundaries due to, for exainple, illegal or nonsensical combinations of variability values.

3.5 Summary

To summarize the discussion in this chapter--no current approach satisfactorily addresses

the needs for requirements modeling and evaluation of families of safety critical systems.

Natural language does not provide the preciseness and analyzability required in this do-

main. On the other hand, many of the current formal notations are not acceptable by the

engineers and software professionals developing these systems. Partial exceptions are nota-

tions such as SCR, SpecTRM, RSML, and RSML -e that have has some success in practice.

These notations provide support for analysis and execution at an early stage in software

development. Therefore, they can serve as prototypes of the proposed system. In particu-

lar, RSML -e is supported with the NIMBUS environment that is specifically developed to

support specification based prototyping.

Current work in product family engineering has been successful at achieving reuse

in limited domains. Many lines of research are helping push the current state-of-the-

art including new techniques for implementing product lines and expressing product line

architectures. In this report, we will address techniques for recording and reasoning about

the structure of the product family requirements; a topic that is inadequately addressed

by current work in the field.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 4

The System Model

In this chapter we present an overview of the model that underlies our requirements model-

ing method. The model is heavily based on traditional process control thinking--therefore,

we first present an overview of process control systems. This overview provided the back-

ground to understand why we have chosen the our underlying framework. We then discuss
two related models so that we can contrast and compare our approach to related work.

Finally, we present the FORMpcs model of systems and discuss how it is used in our

development method.

4.1 Process Control Systems

A system is a set of components working together to achieve some common purpose or

objective. A process-control system usually involves an environment (i.e., the world), a

program (or multiple programs) whose purpose it is to establish or maintain certain condi-

tions in the environment, sensors and actuators that allow the program to get information

about the environment and affect the environment, and finally the operator who can usually

input various parameters to the running program and receive feedback from the running

program. This is summarized in Figure 4.1.

Consider the environment of aircraft moving along in three dimensional space. In this

unconstrained environment, airplanes are free to have midair collisions, disrupt take-off

and landing of other aircraft, and so forth. Clearly, this is not desirable; therefore, we

need a process-control system for air traffic control that will allow us to enforce certain

restrictions in the environment, for example, that planes do not run into one another. To

do this, we will have to have some sensors, which will give us data about the position of the

aircraft in the system, some actuators which will allow us to make course corrections for

the aircraft in the system, and possibly have some operator input to guide these choices.

There are a number of difficulties in constructing process-control systems. First, the

17

18 CHAPTER4. SYSTEMMODEL

I_ Environment

Sensors

[Program

t,
Operator

Actuators

_I

Figure 4.1: A basic process-control model

environment is a key element that is often under specified and/or misunderstood. Mis-

understandings about the environment in which tim system operates have been the cause

of numerous accidents. Second, the sensors and actuators often provide an imperfect, or

noisy, view of the real world; sensors can introduce errors, and actuators can fail. There-

fore, the program may lose track of the true state of the environment and error conditions

in the sensors and actuators can be difficult (or impossible) to detect. Finally, the con-

troller often has only partial control over the process; therefore, state changes can occur in

the environment when no actuator commands were given by the program.

Besides the basic objective or function implemented by the program, process-control

systems may also have constraints on their operating conditions. Constraints may be

regarded as boundaries that define the range of conditions within which the system may

operate. Another way of thinking about constraints is that they limit the set of acceptable

designs with which the objectives may be achieved.

These constraints may arise from several sources, including quality considerations, phys-

ical limitations and equipment capacities (e.g., avoiding equipment overload in order to

reduce maintenance), process characteristics (e.g., limiting process variables to minimize

production of byproducts), and safety (i.e., avoiding hazardous states). In some systems,

the functional goal is to maintain safety, so safety is part of tile overall objective as well as

potentially part of the constraints.

The behavior of the process is monitored through monitored variables (Vm) and con-

trolled by controlled variables (V_). Tile process can be described by the process function

Fp, a mapping from Vm × I_ × D × t --* Os × E. Unfortunately, it is usually difficult to

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.1. PROCESSCONTROLSYSTEMS 19

derivea mathematicalmodelof theprocessdueto thefact that mostprocessesarehighly
nonlinear(i.e.,the processcharacteristicsdependon thelevelof operation),and,evenat
a constantoperatinglevel,the processcharacteristicschangewith time (i.e., theprocess
isnonstationary).Any attemptto providea mathematicalexpressiondescribingthe pro-
cessinvolvessimplifyingassumptionsandthereforewill be imperfect.Someof theprocess
characteristics,however,canbedescribed,andthisdescriptioncanbeusedto deriveand
validatethe controlfunction.

Sensors are used to monitor the actual behavior of the process by measuring the mon-

itored variables. For example, a thermometer may measure the temperature of a solvent

in a chemical process or a barometric altimeter may measure altitude of an aircraft above

sea level. The sensor function F, maps V_ x t _ I.

Actuators are devices designed to manipulate the behavior of the process, e.g., valves

controlling tile flow of a fluid or a pilot changing the direction and speed of an aircraft.

The actuators physically execute commands issued by the controller in order to change

the controlled variables. The functionality of the actuators is described by the actuator

function Fa mapping O x t _ V,,_.

The controller is an analog or digital device used to implement the control function.

The functional behavior of the controller is described by a control function (F_) mapping

I × C × t --* O, where C denotes external command signals. The process may change state

not only through internal conditions and through the manipulated variables, but also by

disturbances (D) that are not subject to adjustment and control by the controller. The

general control problem is to adjust the controlled variables so as to achieve tile system

goals despite disturbances.

This model is an abstraction--responsibility for implementing the control function may

actually be distributed among several components including analog devices, digital com-

puters, and humans. Furthermore, the controller most often has only partial control over

the process--state changes in tile process may occur due to internal conditions in the

process or because of external disturbances or the actuators may not perform as expected.

The purpose of the control-system requirements specification is to define the system

goals and constraints, the function Fc (i.e., the required blackbox behavior of the con-

troller), and the assumptions about the other components of the process-control loop that

(1) the implementors need to know in order to implement the control function correctly

and (2) the system engineers and analysts need to know in order to validate the model

against the system goals and constraints.

A blackbox, behavioral specification of the function Fc uses only:

(1) the current process state inferred from measurements of the controlled variables,

(2) past process states that were measured and inferred,

(3) past corrective actions output from the controller, and

(4) prediction of future states of the controlled process

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

20 CHAPTER 4. SYSTEM MODEL

to generate the corrective actions (or current outputs) needed to maintain F.

Information about the process state has to be inferred from measurements. Theoreti-

cally, the flmction Fc can be defined using only the true values of the controlled variables

or component states (e.g., true aircraft positions). However, at any time, the controller

has only measured values of the component states (which may be subject to time lags 1 or

measurement inaccuracies), and the controller must use these ineasured values to infer the
true conditions in the process and possibly to output corrective actions (O) to maintain

F.

This model is an abstraction--responsibility for implementing the control function may

actually be distributed among several components including analog devices, digital com-

puters, and humans. The next sections discuss elaborations of this model and what are

considered system versus software requirements.
The next sections discuss abstractions of this model and what are considered system

versus software requirements.

4.2 The Four-Variable Model and CoRE

The system model that is most closely related to the model used in this paper is the four-

variable model developed by Parnas and Madey [54], which in turn evolved out of early

efforts to specify the requirements for the A-7 aircraft, in SCR [28, 27].
An overview of the four-variable model is shown.in Figure 4.2. The variables in this

model are continuous functions of time and consist of monitored variables in the environ-

ment that the system responds to M, controlled variables in the environment that the

system is to control C, input variables through which the software senses the monitored

variables I, and output variables through which the software changes the controlled vari-

ables O. Note that M and C do not have to be disjoint, some environmental quantities

may be both monitored and controlled. For example, monitored values might be the actual
altitude of an aircraft and its air-speed, while the corresponding input values would be the

ARINC-429 bus words which the software reads to sense these quantities. Examples of

controlled variables might be the desired pitch and roll of the aircraft, position of a control

surface such as an aileron, or the displayed value of the altitude on the primary flight

display.
Four mathematical relations are defined between these variables. The NAT and REQ

relations describe how the controlled variables change in response to changes in the moni-

tored variables, i.e., they define the system level view of the specification. The NAT relation
defines the constraints imposed by the environment, such as the maximum rate of climb

of an aircraft based on its physical characteristics. The REQ relation imposes additional

1Time lags are delays in the system caused by the reaction time of the sensors, actuators, and the
actual process.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.2. THE FOUR-VARIABLEMODELAND CORE 21

MON

IN

1
INPUT

NAT

REQ
._1_CON

[
OUT

,SOFT "_ OUTPUT

Figure 4.2: The four-variable model.

constraints on how the environmental quantities M and C may change. REQ defines how

the controlled variables are to respond to changes in the monitored variables--REQ defines

the required control behavior. In other words, NAT describes how the environment behaves

in the absence of the controller to be built, while REQ describes how the environment is

to be constrained by that controller.

The model is completed by defining the IN relationship relating tile monitored variables

M to the input variables I and the OUT relation relating the output variables O to the

controlled variables C, effectively modeling sensors and actuators surrounding the software.

Specification of the NAT, REQ, IN, and OUT relations define the allowable behavior of the

control software, shown in Figure 1 as SOFT, without specifying its design--from REQ,

NAT, IN, and OUT, the software relation SOFT can be derived. In addition, this separation

into relations provides a useful separation of concerns by partitioning the specification of

the hardware from the system level specification.

To augment the four variable model and support the SCR language, the CoRE (Consor-

tium Requirements Engineering) [57] methodology was produced by the Software Produc-

tivity Consortium (SPC). Many talented people contributed to the development of CoRE

and it contains many valuable ideas for the development of process-control systems. In

particular, The CoRE guidebook [57] provides technical information on how to document

the environmental variables and how they fit into the four-variable model, and they provide

some guidance on which environmental quantities are suitable candidates as monitored and
controlled variables.

The CoRE process begins with the system requirements and ends with a software

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

22 CHAPTER4. SYSTEMMODEL

requirementsspecification.TheoverallCoREprocessisdividedup into fivemainphases:

1. Identify Environmental Variables: In this phase, the specifiers identify envi-

ronmental quantities that the software can monitor and control. Environmental

constraints, i.e. constraints which would exist without the presence of the system,

are defined; this is called the NAT relation. Finally, the structure of the system is

represented as an entity-relationship (ER) diagram.

2. Preliminary Behavior Specification: In this phase, a first drab of the high-level

behavioral specification, the REQ relation, is developed. The decision is made as

to which environmental quantities are monitored, controlled, or both. The domains
of the controlled functions are defined and the monitored variables which effect the

value of the controlled variable are recorded. Finally, the number and type of mode

machines needed is decided.

. Class Structuring: In this phase, the structure of the system is decided. The CoRE

methodology attempts to support a pseudo-object oriented structuring technique

which includes specialization and generalization. The primary structuring guidance

is to choose the objects based on the physical structure of the system and ms an

extension to the ER diagram developed in the first phase.

. Detailed Behavior Specification: This phase culminates in the completion of the

behavioral specification of the classes identified in the previous phase. The controlled

variable functions are completely defined and the other classes are refined. Timing

constraints, in terms of when each mode machine is recomputed, are also addressed.

5. Define Hardware Interface: In this phase, the characteristics of the sensors and

actuators are defined by defining the IN and OUT relations.

In practice, the developer must iterate between these phases of the CoRE methodol-

ogy rather than proceeding through them in a waterfall-like fashion. The CoRE manual
addresses this iterative nature in and provides an overview of both the ideal and the in-

teractive (realistic) development process. This enables CoRE to provide both guidelines
on what should be contained in the specification as well as how the specification should be

developed. CoRE further addresses the how question by providing entry and exit criteria

for each of the key steps in the model.

CoRE includes many good ideas and suggestions for developers. The guidelines on

identifying the monitored and controlled variables for tile system are useful in focusing the

construction of the REQ relation. Also valuable is the process of developing a dependency

tree for the monitored and controlled variables early in the specification life cycle. This

helps to clarify thinking and avoids circular dependencies, which are not permitted in SCR

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.2. THE FOUR-VARIABLEMODELANDCORE 23

andnot recommendedby Parnas[52]. Finally,the overallprocessis goodand provides
importantguidanceto specificationdevelopersonhowto proceedwith the development
effort and what informationshouldbe includedat the variousstages.Theseguidelines
providesomehelp,but in our experiencemoreguidanceis neededto correctlymakethe
cruciallyimportantselectionandclassificationof theenvironmentalvariables.

4.2.1 Discussion

The four variablemodelhasservedasthe foundationfor severalresearchefforts. Most
notably,theworkat theNavalresearchLaboratoryontheSCRnotation[28,27,25,24,26]
andat the Universityof Minnesotain theirworkonspecification-basedprototyping[59].

The main problemsencounteredwhenapplyingthe four-variablemodelare (1) diffi-
culty in identifyingappropriatemonitoredandcontrolledvariablesand (2) thedifficulty
in refiningthe requirements(REQ,NAT, IN, and OUT) to the SOFT relation. These
problemsarenot fimdamentalto the model--therearesimplynoappropriateguidelines
availablefor thesetwoactivities.

Identify environmental variables: The guidelines available for this activity are not

sufficient for the practitioner. In [54], the originators of the four-variable model state

The environmental quantities include: physical properties (.such as temperature

and pressure), the readings on user visible displays, administrative information

(such as the number of people assigned to a given task), and even the wishes o/
a human user.

In a footnote, they provide some additional guidance:

Frequently, it is not possible to monitor or control exactly the variables of in-
terest to the user. Instead one must monitor or control other variables whose

values are related to the variable of real interest. Usually, one obtains the

clearest and simplest document by writing them in the terms o/the variables

of interest to the user in spite o/the/act that the system will monitor other

variables in order to determine the value of those mentioned in the document.

The CoRE guidebook [57] provides technical information on how to document the

environmental variables and how they fit into the four-variable model, and they provide

some guidance on which environmental quantities are suitable candidates as monitored and

controlled variables. From the CoRE guidebook [57]:

• Variable properties of physical objects in the problem scope, e.g., positions, velocities,

and temperatures.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

24 CHAPTER4. SYSTEMMODEL

• Physicalquantities,suchasdimensionsof physicalobjects.

• Informationpassedacrosstheinterfacesof physicaldevices,e.g.,devicestatusorde-
vicecommands.Environmentalvariablestypicallyabstractthe interfacesof physical
devices.Welookat physicaldevicesbecausetheygiveusinsightintowhichphysical
quantitiesthesoftwaresystemcanmonitorandcontrol.

• Informationprovidedby or suppliedto a humanuser,e.g.,usercommandsor user
displays.

• Undesiredevents,e.g.,failuresof componentsof tile systemor the softwaresystem
itself,to whichthesoftwaresystemis requiredto respond.

Theseguidelinesprovidesomehelp,bet in our experience,moreguidanceis needed
to correctlymakethe cruciallyimportantselectionandclassificationof theenvironmental
variables.

Refinement to SOFT: AssumingwehavecapturedtherelationsREQ,NAT, IN, and
OUT, weneedto derivethe SOFT relation. Thereis preciouslylittle guidancein the
CoREguidebookaswellasin theoriginalworkonhowto achievethis task.This is,in our
opinion,a seriousshortcomingwhichweattemptto addressin theFORMpcsmethod.

Finally,this basicparadigmof thefour-variablemodelwasextendedby the Software
ProductivityConsortiumto useobject-orientedconceptsto makethespecificationrobust
in thefaceof changeandto supportproductfamilies[8],[9], [10].Theseextensionswere
briefly discussedin tile previouschapterand will not be coveredfurther in this guide
book weprovideanentirelynewstructuringapproachin this guide.

4.3 The WRSPM Model and REVEAL

Michael Jackson and Pamela Zave have presented a reference model for requirements

specifications--the world-machine model [30, 32, 33, 66]. The discussion in this section
is based on the formalization of this model provided by Gunter, Gunter, Jackson, and

Zave [19].
The main idea behind the world-machine model is a separation of concerns between the

world (or the environment) and the machine (or, the system to be built). Jackson et al.

state that the requirements and problems exist in the world, because it is the world that

we wish to change via the introduction of the machine. Thus the WRSPM is based on five

artifacts grouped roughly into two categories--the ones relating mostly to the environment

(or world) and those that pertain mostly to the computer and software (or the machine).
These artifacts are denoted by W, R, S, P, and M as illustrated in Figure 4.3. The artifacts

are:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.3. THE WRSPMMODELAND REVEAL 25

Environment System

Figure 4.3:
model.

_ visibility _ control

The world, requirements, specification, program, and machine (WRSPM)

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

26 CHAPTER4. SYSTEMMODEL

The World (W): This is domainknowledgethat capturesknowledgeof environmental
facts.

The Requirements (R): Describeswhat thecustomerneedfrom thesystemexpressed
in termsof its effecton theenvironment.

The Specification (S): A lessabstractdescriptionof thedesiredbehaviorthat provides
enoughinformationfor asoftwaredeveloperto designandimplementa systemthat.
satisfiestherequirements.

The Program (P): The program(implementedin someprogramminglanguage)that
implementsthespecificationandrunsonsomemachine.

The Machine (M): Thesystem(computer,associatedhardware,operatingsystem,etc.)
that executestheprogram.

Variablesthat belongin tile worldarecollectivelycallede--the ones belonging in the

machine are called s. The variables in the world e are split into two mutually exclusive

sets eh and e,,--the variables in eh are hidden from the system and are considered to be

exclusively in the domain of the environment. The variables in e,, are visible to both the

environment and the system. The variables in s are decomposed in a similar way into sv

and Sh where all variables in Sh are hidden from the environment.

With this decomposition of the variables, eh, ev, and sv are visible to the environment
and used in W and R. Variables in ev, s,, and Sh are visible to the system and used in

P and M. The only variables shared between the environment and the system are in ev

and s_--therefore, the specification S is restricted to use only variables in ev and s. and

they form the interface between the environment and the system. Figure 4.3 (from [19])

illustrates the relationship between the variables and the various artifacts.
The WRSPM is related to the four-variable model discussed in the previous section.

W corresponds to NAT in the four-variable model. R corresponds to REQ. In the four

variable model, REQ and NAT are somewhat more restrictive than W and R in that

it can seemingly only make assertions about the variables that are shared between the

environment and the system. W and R allow us to make statements about variables that

are hidden from the system (eh). SOFT corresponds to P, and IN and OUT together

correspond to M.
The real difference between these two models is in the consistency and sufficiency

constraints imposed on these various relations. We will not consider these technical details

further in this guide_the interested reader is referred to [19] for a detailed discussion.
The WRSPM model is intended as a reference model only and does not discuss how

the various variables in e and s are selected. Nor does the method discuss how the vari-

ous artifacts are derived or structured--this is a pure reference that simply discusses the

required relationship between these different artifacts.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.3. THE WRSPMMODELAND REVEAL 27

TheREVEALmethodology[55]wasdevelopedby PraxisCriticalSystems,Limitedas
amethodbasedon theworld-machinemodel.REVEALconsistsof six stages:

.

.

.

Defining the Problem Context: In this stage the goal is to develop an under-

standing of the problem (i.e., what it is about the world that you wish the system to

help to achieve) and explore the boundaries of the problem.

Identifying Stake holders and Eliciting Requirements: This second stage is

associated with identifying stake holders to the project and eliciting requirements

and domain knowledge.

Analyzing and Writing: In the third stage, the requirements and domain knowl-

edge are written down and analyzed using the completeness criteria of the WRSPM
model.

.

.

.

Verification and Validation: The fourth stage involves checking the work that

was done in the first three stages to ensure its accuracy.

Use: After the fourth stage, tile requirements will be used throughout the rest of

the development life cycle.

Maintenance: Should any changes to the requirements be discovered, then we

must perform maintenance on the description. This is discussed in the final stage of
REVEAL.

The REVEAL methodology is based on two key processes: (1) conflict management,

and (2) managing requirements. The work in REVEAL on managing requirements is the
most relevant to this work.

REVEAL implements a unique notion of traceability of the requirements based on the

WRSPM model. In the WRSPM model the requirements are satisfied when the World

(W), and the Specification (S) imply the requirements. That is,

W,S_-R

This concept is referred to as the Adequacy Check by the REVEAL method. REVEAL

uses the adequacy check as a basis for the entire requirements process.

Suppose, for example, that we start out writing down the general requirements for a

system that we are building. We would record these requirements, Rgen, along with a

description of the World, W, and specification, S. Then, we demonstrate that W, S t- R q_.n

and life is good.

Now we want to introduce more detail to Ra_,, and produce a set of requirements
at a lower level of abstraction. Of course, the detailed requirements, Rdet, are certainly

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

28 CHAPTER4. SYSTEMMODEL

relatedto Rge,, and certainly that relationship should be preserved in the requirements
documentation. Thus in REVEAL, we would prove the property:

W, Rdet I- Rqe,

then, by transitivity, we can reuse the original adequacy check on the general requirements

so show that the requirements are still satisfied. Doing this provides traceability to the

high-level requirements from the detailed requirements and ensures that if the high-level

requirements change, the proofs for the detailed requirements will no longer work (as you

would expect). This notion of traceability is similar to that proposed by Leveson [17, 40]

for Intent Specifications except that in REVEAL the traceability is organized around a
more formal framework.

The traceability information recorded by the REVEAL methodology combined with

its use of the WRSPM system model make REVEAL a good complement to the CoRE

methodology that we discussed earlier. However, a combination of REVEAL and CoRE

would still not serve the needs of practitioners because neither methodology adequately

addresses the issues associated with recording the requirements for product families. Fur-

thermore, REVEAL does not address specifically the issues associated with state-based

specification of process-control systems in a formal language (as CoRE does).

4.4 The FORMpcs More Variable Model

There are variations of the four-variable model that are useful on occasion. For example, it

may be helpful to layer tile IN and OUT relations into levels much like tile ISO Reference

Model for communication protocols. Another variation is to "glue" the controlled variables

of one or more models to the monitored variables of another model to create a larger system

specification or to split a large model up into several smaller models (although care must

be taken not to fall into the trap of introducing implementation bias). However, Figure 4.4

depicts the basic paradigm and is adequate for the current discussion.

One problem (or advantage) with the traditional four variable model shown in Fig-

ure 4.2 is that it leaves the software developer with the question of how to structure an

implementation of SOFT, i.e., how to write the software. One appealing approach is to
"stretch" SOFT into the relations IN', REQ', and OUT' as shown in Figure 4.4. In this

figure, IN' and OUT' are nothing more than a collection of hardware interface routines

designed to isolate the software frorn changes in the hardware. This conceptual view cre-
ates a virtual image of the MON and the CON variables in software, an approach often

advocated in object-oriented design methods.

Decomposing the software in this way has several benefits. First, if MON aald CON are

chosen correctly, the portion of the software specified by IN' will change only as the input

hardware changes. Likewise, the portion of the software specified by OUT' will change

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.4. THE FORMpcsMOREVARIABLEMODEL 29

i MON ,91...

'\ x,\

MON' \
\'1

IN

NAT
REQ

REQ'

 co.;
//

.._/CON' /Y

i\ fj .t

OUT

IN' OUT'

INPUT .-_ ...SOFT..

OUTPUT

Figure 4.4: The FORMpcs system model adapted from [48, 59]

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

30 CHAPTER4. SYSTEMMODEL

only asthe output hardwarechanges.In a similar fashion,the portionof the software
specifiedbyREQ'will beisolatedfromhardwarechangesandwill changeonlyin response
to changesin REQ,thesystemrequirements.Sincecustomerdrivenchangesandhardware
drivenchangesarisefor differentreasons,thishelpsto maketile softwaremorerobustin the
faceof change,partiallyaddressingthe issuesof requirementsvolatility identifiedearlier.
It alsogreatlysimplifiestracingthesystemrequirementsto the softwarerequirements.

Of course,it is importantto notethat MON' andCON'arenot thesameasthesystem
levelvariablesrepresentedby MON andCON.Smalldifferencesin valueareintroduced
bothbythe hardwareandthesoftware.Differencesin timingareintroducedwhensensing
andsettingtheinput andoutput variables.Forexample,thevalueofanaircraft'saltitude
createdin softwareis alwaysgoingto lag behindanddiffersomewhatfromthe aircraft's
true altitude. In safety-criticalapplications,the existenceof thesedifferencesmust be
takeninto account. However, if they are well within the tolerances of the system, the

paradigm of Figure 4.4 provides a natural conceptual model relating the system and the

software requirements. This directly addresses the issue of integrating systems and software

engineering identified earlier.

Frequently, it is not possible to monitor or control exactly the variables of in-
terest to the user. Instead one must monitor or control other variables whose

values are related to the variable of real interest. Usually, one obtains the

clearest and simplest document by writing them in the terms of the variables

of interest to the user in spite of the fact that the system will monitor other

variables in order to determine the value of those mentioned in the document.

The specification starts as a high-level model of the system requirements (i.e., the REQ

relation). This model is is then iteratively refined, adding more detail as the system

becomes better understood. During each iteration, if a formal, executable specification

language is used, the specification is executable and can therefore be used as the proto-

type of tile proposed system. Eventually, the system requirements will be well-defined

and the system engineer must allocate requirements to particular hardware and software

components within the system. At that point, the system requirements can be refined to

the software requirements by adding descriptions pertaining to the actual hardware with
which the software must interact.

From the start of the modeling effort, we know that we will not be able to directly
access the monitored and controlled variables--we must use sensors and actuators. At

this early stage, we may not know exactly what hardware will be used for sensors and

actuators; but, we do know that we must use something and we may as well prepare for

it. By simply encapsulating the monitored and controlled variables we can get a model

that is essentially isomorphic to the requirements model; the only difference is that this

model is more suited for the refinement steps that will follow as the surrounding system is

completed.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

4.4. THE FORMpcsMOREVARIABLEMODEL 31

MON--REQ'-Im* CON

MON'--REQ'-'IP- CON'

IN' OUT'

MON & CON &

INPUT OUTPUT

MON'--REQ'-IP,- CON'

T
IN'

INPUT

OUT'

1
OUTPUT

Figure 4.5: Refining REQ to SOFT

The mcthod of this encapsulation differs depending on thc language uscd. If the lan-

guage does not have a modularity construct, then extra variables or functions can be intro-

duced in the specification to isolate the REQ' behavior from the hardware specification. If

the language does have a modularity construct, the specifier may choose to define a module

that computes the REQ' relation and then the module's interface naturally provides the

encapsulation.

As the hardware components of the system are defined (either developed in house or

procured), the IN and OUT relations can be rigorously specified. Figure 4.5 shows a high-

level view of the refinement process. At the far left of the figure, we start the process with

just a notion of the REQ' relation and evaluate REQ' with the monitored and controlled

variables (we basically assume that tile sensors and actuators are perfect-there are no

delays or noise). Next, we move into an intermediate stage as we add more and more

detail to the IN' and OUT' relations. During this stage, the specifications for some sensors

and actuators might be completely finished while the specifications of others are under

development; this is the reason that both MON and INPUT are noted as the sources for

the IN' relation (and similarly for the OUT' relation). Finally, we will arrive at a complete

specification of both the IN' and OUT' relations, shown at the far right of the figure.
We have shown in the abstract how the SOFT relation should be structured and our

conception of the process that should be used to refine the REQ relation to the SOFT

relation. In the next sections, we illustrate this approach by applying it to the ASW and

the Mobile Robotics examples.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

32 CHAPTER4. SYSTEMMODEL

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 5

Product-Line Engineering Concepts

Today's consumers want devices and systems custom fitted to their needs. Software

product-line engineering has the potential to deliver great cost savings and productivity

gains to organizations that provide families of products, as well as give those organizations

a competitive edge in the market-place. For safety-critical systems, software-product line

engineering has the potential to produce systems that are more safe than their serially

produced counterparts while being cheaper and faster overall to build.

Even if the goal of the development effort is to the production of a product family,

techniques oriented towards product families may still be used to provide for increased

flexibility in the long term. One can view the iterative version of a program which are

produced through maintenance as a product family.

The commonality analysis [62] is the document which describes the product family. Any

product family may be described by listing its commonalities, i.e., those features which are

shared by all members of the families, and its variabilities, i.e., those features which are

allowed to vary accross members of the family.

One way to view a product family is as a set, where the boundaries of the set are

determined by the commonalities, and the individual members of the set are distinguished

by the values of their variabilities (Figure 5.1). As the figure demonstrates, it is entirely

possible that some members of the family may theoretically exist but not yet be built

(shown in gray). Furthermore, the family may be undefined at some points within the

boundaries due to, for example, illegal or nonsensical combinations of variability values.

A family where all the variabilities have a sensical value for all family members, a

single product family may work for the entire domain. These sorts of families are most

commonly used as examples of product family engineering. However, for many families

some variabilities do not have a sensible value for all family members; instead, whether

or not a particular variability has a sensical value may depend on the values choosen for

other variabilities. In this way, the choice of the second variability is effected by the choice

of the first; this can be viewed as a hierarchical relationship between these variabilities.

33

34 CHAPTER5. PRODUCT-LINEENGINEERINGCONCEPTS

Boundnes of the eet _ determined

by the Cornr_libes

Indivldual filmily rnoml_ra sre

%_ . Some femrnih/members may

theoceHicabty nmst, b_ ,3or be built

Figure 5.1: A simple product family

Furthermore, many product families contain multiple dimensions; that is, many families

have groups of related

5.1 n-Dimensional and Hierarchical Product Lines

Current techniques for product-line engineering work well if tile following conditions are
met:

• The systems in the family share significant commonalities, and

• Tile variabilities which define each family member have a straightforward decision

model, i.e., it does not require many complicated rules to describe how the variability

values are assigned to produce each family member.

The first point describes the essential feature of product families that Parnas noticed in his

work. However, the second point originates in the practical experience of many researchers

who have labored to construct software product-lines. Robyn Lutz observed that the

primary limitations of the product family approach stem from difficulties in handling "near-
commonalities and relationships among the variabilities" [emphasis added] [47]. Thus, the

more simple the relationships among the variabilities, the easier it is to construct the

product fmnily.

5.1.1 n-Dimensional product families

Attempts have been made to organize the product family requirements in a hierarchical

fashion [47, 51, 37, 38]. Lutz noted in her attempt to organize the variabilities into a
tree that "there were several possible trees, with often no compelling reason to select one

possible tree over another" [47].

Brownsword and Clements present a shipboard command and control systems family

which contained 3000-5000 parameters of variation for each ship [9]. They state that

"the multitude of configuration parameters raises an issue which may well warrant serious

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.1. N-DIMENSIONALANDHIERARCHICALPRODUCTLINES 35

I Flying Craft FGS I

Figure 5.2: FGS product family covering flying craft

attention." In addition, they present three different views of the architectural layering of

the base system that "do not conflict with each other; rather they provide complementary

explanations of the same ideas."

Both these examples, as well as our own experience in the domain of mobile robotics,

illustrate the fact that often a product family is multi-dimensional; therefore, a hierarchical

decomposition is not sufficient to capture the structure of the domain. We call such domains

n-dimensional product families.

5.1.2 Hierarchical product families

Suppose that a company wished to construct a flight guidance system (FGS) for both

fixed-wing aircraft and helicopters 1. The FGS is responsible for issuing commands that

keep the aircraft level, cause it to climb or descend, and so forth. Furthermore, the FGS

must interact with other airborne systems. Many of the tasks that, the system has to per-

form might be common across these two radically different aircraft: interaction with other

systems, deciding to level off at a particular altitudc, mode transition logic related to when

it is legal to switch between the various operating modes. Therefore, many requirements

between these two systems will be the same, or very similar. Nevertheless, the actual

control of the aircraft is very different. Therefore, developing a single set of commonalities

and variabilities wtfich span this entire domain is difficult.

Some would argue ttmt this difficulty sterns from the fact that the family is simply too

diverse to be considered a product line. However, it is clear that these systems share much

in common, which was the original, and in our view the most important, criterion for being

a family. Thus, we propose the concept of a hierarchical product family.

Most previous attempts at product family structuring have focused on hierarchically

grouping the variabilities while the cornmonalities remain the same for all family mem-

bers [47, 38]. Notable exceptions are Parnas [51] and Brownsword and Clements who

noted in their case study at CelciusTech [9] that sometimes product-lines exist within the

main product line. However, Parnas' work is based heavily on design and coding choices;

1We would like to thank Steven P. Miller of Rockwell-Collins Inc. for this example

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

36 CHAPTER5. PRODUCT-LINEENGINEERINGCONCEPTS

(a) (b)

Figure 5.3: Hierarchical decomposition and subset structure

therefore, it is difficult to apply to requirements. Brownsword and Clements mention this

phenomenon in passing and apply it in a more limited way' than what we advocate.

In our approach, additional commonalities which are unrelated to the parent product

family can be added in the sub-families. The hierarchical decomposition of the FGS family

is shown in Figure 5.2. Thus, the helicopter sub-family can have significantly diflcrcnt

requirements than for fixed-wing aircraft, yet share many things in common as well.

This will eventually effect the architecture and structure of the systems. For example,

the product of the domain engineering for the parent fanfily, Flying Craft FGS, might be

a set of reusable components, whereas the product of domain engineering for the children

might be a reference architecture or generation facility. The architectures for the fixed-

wing aircraft and the helicopters could differ significantly and use the components from

the parent family in different ways.

By structuring the requirements in this way, we have avoided imposing restrictive design
constraints on the family members and instead focus on the structure of the domain itself.

Furthermore, should the company wish to start building FGS systems for an entirely new

set of aircraft, for example, tilt-rotor aircraft, this could be done while reusing many aspects

of the FGS systems already implemented. This is also shown in Figure 5.2.

5.2 Structuring Families

This section describes how set theory can be used to think about structuring product

families. The most basic structure that can be represented with the set theoretic approach

is the subset. Figure 5.3 shows a product family, A, which has been divided into two

subsets, B and {:. Furthermore, C has been further divided into subsets D and ':. This

corresponds to a hierarchical decomposition of the family.

Consider a member of family F, ex. The member el must have all the commonalities

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.2. STRUCTURINGFAMILIES 37

(a) (b)

Figure 5.4: Abstract verses non-abstract families

defined for E as well as have some values for all the variabilities in E. Furthermore, because

E is a subset of (: and A, el is also a member of families {2 and A. The general definition

for any family F which is a subset of another family C is as [ollows:

• E must include all of the commonalities in (:.

• E must include all of the variabilities in (:; however, E may restrict the range or

options available in the variabilities.

• E can add additional commonalities which are not present in (: as long as the ad-
ditional commonalities do not conflict with the commonalities or variabilities in C.

These new commonalities might come from a refinement of variabilities in (: or might

be completely unrelated.

• F can define additional variabilities which are not present in {2 as long as those
variabilities do not conflict with the above.

The first criterion is straightforward and necessary for the subset E to be completely

contained within (:. The second criterion defines the fact that E may wish to refine or

restrict the values of the variabilities of C. For example, in the mobile robotics domain, a

variability across the entire domain might be that the maximum speed of the mobile robot

can vary from one to five miles per hour. However, subsets might define a lesser maximum
speed depending on the hardware involved. It is possible for this refinement to result

in an additional commonality, for example, a subset that instantiates a boolean choice

variability to a particular value. Additional commonalities can also be added which are

unrelated to the parent family. For example, it is likely that the family of helicopters will

need different commonalities than the family of fixed-wing aircraft. Finally, it is possible
to add additional variabilities.

The two cases of hierarchical decomposition are shown in Figure 5.4. Part (a) of the

figure demonstrates that the family R need not have any members that only exist in R.

In a sense, R is an abstract family, because any member of R must be either a member

of S or a member of T. This is similar to our FGS example from earlier, where all family

members are either helicopters or fixed-wing aircraft and it does not make sense to talk

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

38 CHAPTER5. PRODUCT-LINEENGINEERINGCONCEPTS

E

E

(,) (b}

Figure 5.5: Set intersection and non-hierarchical structure

about member which are only of the parent family. However, this need not be the case, as

Figure 5.4(b) demonstrates.
Another structure that can be represented using a set-theoretic approach is that of set

intersection. The ability to represent a set intersection distinguishes this approach from

the purely hierarchical structures which have been applied by others. This is shown in

Figure 5.5.
Consider a member, ml of M. By definition, ml is also a member of families K, L,

and J. Thus, ml must have all the commonalities of both K and L. In addition, M is a

subfamily of both families K and L (this is shown in the figure). The constraints on any

family M which is a subset of families K and L are as follows:

• M nmst include all the commonalities of both K and L.

• M must include all the variabilities of both K and L; however, it may restrict those

variabilities as above for subsets.

• M may introduce additional commonalities which are not present in either K or L.

• M may introduce additional variabilities which are not present in either K or L.

These structures can be used to document and reason about the two problems explored

in tile previous section; they can be used to describe product families which are both
n-dimensional and hierarchical.

5.3 Addressing existing issues

This section describes how our approach can assist with well-known documented issues in

product-line engineering. We describe how our structuring method can deal with near-
commonalities as well as variability dependencies.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.3. ADDRESSINGEXISTINGISSUES 39

Figure5.6: Setrepresentationof a near-commonality

Near-commonalities: A near-commonality(NC) is a commonalitywhich is true for
almostall (e.g.,all exceptone)memberof the productfamily. Lutz statesthat in her
experiencenearcommonalities"frequentlyhad to be modeled"[47]. Onesolutionfor
nearcommonalitiesis to modelthem asvariabilities;however,this is, in somesense,a
misrepresentationof their basicproperties.Thesolutionthat Lutz advisesis to model it

as a constrained commonality of the form "If not member n then NCI." However, a complex

domain might contain numerous constrained commonalities with conditions significantly

more complex than the example just mentioned.

Figure 5.6 shows how a near-commonality is represented in our approach. The near

commonality, NC1, would simply be a property of family O (and not of la). Thus, the

commonality naturally does not apply to n a member of only P but does apply to any

member of O. This has several advantages. First, NC1 is now a pure commonality of

O. Second, if another member of the family is introduced with reduced functionality [47]

it need only be added as a member of Ia and O may remain untouched. Finally, the

subset structure can act as a guide in determining that certain components in the eventual

application engineering environment will not be needed for n

Dependencies among options: In [47], Lutz cites modeling dependencies among op-

tions as one issues that must be addressed in product family engineering effort. A depen-

dency is typically a constraint among the variabilities, for example, if variability VI has

value B then variability V2 must have option C. Ardis recommends treating this constraint
as a commonality. However, in our experience, without some additional structuring, the

domain could become littered with such commonalities; in 'addition, it may not be clear

given a set of constraints whether or not a particular variability is viable.

In our approach, we can also represent constraints like these as commonalities. However,

we isolate them into logical groups by forming different subfamilies so that their numbers

do not become overwhelming. In the abstract example given above, a set would be defined

where "V1 has option B" and "V2 has option C" are both commonalities.

In this section, we have discussed how our approach can help deal with existing issues

which have been raised in the literature regarding product families. In the next section,

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

40 CHAPTER5. PRODUCT-LINEENGINEERINGCONCEPTS

wegoon to describehowthis structuringmechanismcanhelpdealwith moredifficult
productfamiliesillustratedwith anexamplein themobileroboticsdomain.

5.4 Benefits

The structuring technique presented results in the creation of more families within the

domain than with a traditional approach. However, these sub-families are more cohesive

and simpler than would be the case if we created just one top level-family. We believe

that this provides several benefits. First, the top-level family can now be much broader

than was previously possible. Second, the overall family can be expanded and contracted

by adding and subtracting sub-families. Finally, these techniques will allow a family to be

more easily refactored as the definition of the family evolves over time.

The ability to draw a larger product family was an essential requirement for the struc-

turing technique. This grows out of our own experiences with mobile robotics [14], where

we had difficulty in applying the product family approach. This difficulty stems from the
fact that the mobile robotics domain is both n-dimensional and hierarchical.

The mobile robotics domain breaks down along two clear dimensions: the hardware

platform and the desired behavior. Each hardware platform conforms to a basic specifica-

tion: it can move forward and backward, turn left. and right, sense whether or not an object

is in front of it. The hardware platform may also be equipped with a variety of sensors

and actuators that give it additional capabilities; and, the various sensors differ greatly in

the speed and accuracy with which they provide information. Thus, on the hardware side,

there are many different configurations that must be modeled.

On the behavior side, we can imagine that a basic behavior might be a random ex-

ploration where the primary goal of the robot is collision avoidance and recovery. More

complex behaviors can be added, for example, wall following, going through doors, and

finding particular objects. Furthermore, those behaviors may be composed and combined

to form a composite behavior. We might envision a behavior which includes the door

navigation, a wall following behavior, and a high-level planner. The high-level planning
behavior needs to communicate with the random exploration, door navigation, and wall

following to direct the robot towards high-level goals. However, if the robot collides with

an obstacle, then the lower level behavior will take over and recover from the collision.
Thus structure of the behavioral dimension is much different from the hardware dimension

and resembles Brooks' subsumptive architecture [8].

Certainly, a domain such as mobile robotics which absolutely requires n-dimensional

and hierarchical product families will necessarily be more complex than a domain that

does not require these techniques. Nevertheless, any domain can benefit from reuse of the

artifacts at the top of the family hierarchy and a more traditional cost-benefit will exist

towards the leaves of the family (along each particular dimension).

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

5.4. BENEFITS 41

//

/
/

/

/
i

i

I
/

//

/.'_ /

/
/

/
/

/
/

Figure 5.7: Cost-benefit of the FGS Family

Another benefit of the technique is the ability to expand and contract the family as

necessary. This ability is essential because it allows a more incremental development of

product-lines than is facilitated by current approaches. Furthermore: it facilitates family

refactoring; that is, the family can be redefined more easily as the product line evolves

over time. Thus, this structuring technique has much potential to increase the usefulness

of the product family approach.

One of the barriers to traditional product family approaches is that the whole organi-

zation must change to accommodate product-line oriented development. Many resources

are required to develop the domain engineering support for the entire product line while

at the same time continuing to produce products for existing customers. Our approach

allows an organization to start out with a high-level product family and reuse just a few

key pieces between the major product areas. As tile payoff from this reuse makes more

organizations resources available, the organization can then afford to make the family more

rich (by refactoring and/or adding sub-families) and thus achieving more payoff from the
effort.

Of course, these benefits do not come for free. The broader and more flexible view of

product families allowed by our techniques will result in families which are more complex

than traditional families. In addition, because of this broader view, it may be more difficult

to determine what constitutes a viable family under our approach. Almost anything is

related in some fashion or other and it may be difficult for organizations to decide when to

define an encompassing family for a particular group of subfamilies. Nevertheless, we feel

that these techniques hold promise and may serve to advance the frontiers of product-line

engineering.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

42 CHAPTER5. PRODUCT-LINEENGINEERINGCONCEPTS

The cost-benefitanalysisof our product-lineengineeringapproachis moredifficult
becauseonemustnot onlyconsiderthecostof developingdomainengineeringsupportof
theparticularsub-familyin whichthememberresides,but alsoall sub-familiesabovethat
onein the productfamily hierarchy.For example,the cost-benefitsfor theFGSfamily
is shownin Figure5.7. The payofffor the fixed-wingFGSis shownby the thick black
lineandthepayofffor thehelicopterFGSfamily isshownby thethick grayline. As the
figuredemonstrates,thepayoffpoint for thetwosub-familiesis different,becausethecost
of implementingeachoverandabovethe functionalityprovidedby the flyingcraft FGS
family is different. As the structureof the familybecomesmorecomplex,for example,
throughthe creationof a deeperhierarchiesand/or theuseof multipledimensionswith
constraintsbetweenthem,thisrelationshipwill becomemorecomplex.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 6

The Methodology at a Glance

Now that we have setup the background of what problems there are in requirements en-

gineering and presented several different models that help analysts think about the re-

quirements for families of embedded systems, this chapter presents and overview of the

FORMpcs methodology, which is the subject of the remainder of this report.

We begin by discussing FORMpcs in an idealized setting where the specifier always has

all the correct information necessary to make correct decisions at each stage of the process.

Often, however, this is not the case [53]. Thus, the idealized process is not necessarily a

realistic one. Neverthess, the requirements document, to be usefill, should be organized

according to the idealized process.

The second half of this chapter deals with the desparity between the realistic process and

the idealized process by noting the common says in which one typically iterates between the

activities of FORMpcs. This organization is similar to that of the CoRE methodology [57].

6.1 Idealized FORMpcs Process

This section describes the idealized FORMpcs process activities. Each subsection below

describes a phase of the methodology, begining with the commonality analysis and ending

with the specification related to the sensors and actuators in the final, physical system.

Along the way, we will define environmental quantities and operator set points, develop

an overall structure for the requirements and then develop a draft specification, finally,

we will refine that specification (adding, for example, error handling and fault recovery

behaviors).

43

44 CHAPTER6. METHODOLOGYAT A GLANCE

6.1.1 Commonality Analysis

Thecommonalityanalysisis thefirst phaseof the methodology.The commonalityanal-
ysisbeginswith a short (i.e.,oneto 5 paragraphs)high-leveldescriptionof the intended
family. This high-levelparagraphis then refineduntil the analystcanbeginto identi_'
the commonalities, i.e., those features which are present in all family members, and the

variabilities, i.e, those features which vary accross members of tile family. This initial set
of commonalities and variabilities forms the basis for the rest of the process.

In the FORMpcs approach, we allow a family to be broken down along different di-

mensions, for example, a hardware dimension and a behavioral diminesion. In addition, we

allow a family to be broken into several sub-families, for example, a general family of fly-

ing craft might be broken down into fixed-wing aircraft and helicopters. This family-level

structuring occurs as a result of discovering additional commonalities and variabilities dur-

ing the cominonality analysis. Finally, we will examine the commonalities and variabilities
in terms of whether they apply to the REQ relation or whether they apply to the IN' or

OUT' relations.

At the end of the commonality analysis, you will have a description of the family

including all the sub-families and dimensions involved; and, you will have a subset of the
commonalities and variabilities that you will use to specify the REQ relation in the next

stages.

6.1.2 Environmental Variables

In the environmental variables phase, the goal is to identi_' quantities in the environment

that are important to the specification. Earlier, we discussed several models of viewing

the system's interaction with the environment, including our own more variabile model.

This phase of the methodology provides concrete guidance on how to choose monitored

and controled quantities. In addition, this section will demonstrate the characteristics of

the various types of environmental variables.

At the end of this phase, you will have a list of all the monitored and controlled variables

used in the system cataloged according to thief type. This will form the boundaries of the

REQ relation. Furthermore, you will have a statement of the NAT relation, i.e., a statement
of the constraints that are imposed upon the environmental variables in the absence of the

proposed system(s).

6.1.3 Initial Structure

In the initial structure phase, you will use the environmental variable descriptions devel-

oped in the previous phase along with the product family structure identified in the first

phase to develop an initial structure of the REQ relation. In languages which support

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

6.1. IDEALIZEDFORMpc s PROCESS 45

a module construct, specification entities may be grouped together into pieces that can

be reused accross the product family. In languages that do not support a module con-

struct, specification pieces can be formed by textual delimitation and physical grouping.

Component reuse can be accomplished by cut-and-paste.

The outcome of the this phase phase will be that the REQ relation is divided into a

series of manageable pieces each of which will be specified in detail in the next phase of

the methodology.

6.1.4 Draft Specification

In this phase, a preliminary behavioral specification of the system requirements is devel-

oped. This first version of the specification will deal primarily with the intended, normal

case behavior. While, failure modes and fault tolerance must be kept in mind, these char-

acteristics will be added to the specification in later stages. This phase concentrates on

refilling the module definitions developed in the previous stage into working pieces of the

specification. When all the modules have been defined, then the specification is complete.

The outcome of the draft specification is a document which can be reviewed so that

all interested parties can agree on the essential behavior of the REQ relation without

getting bogged down in details about particular sensors and actuators, or about complex

failure modes and error handling. Using RSML -_ with the NIMBUS environment, it is

possible to simulate the high-level behavior at this point; therefore, everyone involved on

the specification effort can get a very good idea of the behavior that was specified.

6.1.5 Detailed Requirements

When producing the Detailed Requirements, the analyst will begin to add to the REQ

relation all things that were initially left out of the preliminary behavioral specification. In

this phase, we will consider the fault tolerance of the specification, error conditions which
may arrise due to the fact that we are using sensors and actutors, and so forth. Also,

hear is where we need to consider in more detail the startup and shutdown behavior of the

system.

As these new behaviors are added, we may find it necessary to revisit decisions which

were made about the preliminary specification as well as about the requirements structure.

Thus, it is natural to iterate between these phases.

At this point, the analysts should start to analyze and/or test the completeness and

consistency of the REQ specification. Therefore, if analysis tools are available, the REQ

specification should be run through these tools and ally errors which are found should be
corrected.

The outcome of this .phase is a completed specification of REQ.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

46 CHAPTER6. METHODOLOGYAT A GLANCE

6.1.6 Sensors and Actuators

Phases two through five tlave illustrate how to move from the commonality analysis in

phase one to a completed REQ specifiation. In this final phase, the process will be repeated

for the IN' and OUT' phases. In discussing this phase, we point out which parts of the

process are generalizable and what information needs to be considered specificially for the
hardware.

The outcome of this phase is the completed behavioral specification of the SOFT rela-

tion.

6.2 Normal Iteration Among the Phases

In an ideal world, the specifier would proceed through the phases one after the other and

never have to go back and modify the products of an earlier phase once that phase was

complete. However, researchers know from thief experience with the Waterfall model of

software engineering that this is not the case. This section discusses the various common

ways that iteration occurs between the various phases.

6.2.1 Constructing Partial Specifications

It is common in process to have one portion of the specification more refined than another

portion. This is sometimes a concious choice - focusing on some aspects of the system

while ignoring others - but it can also be that certain details were overlooked by accident

when the specification was first constructed.
One case where this can happen is after during the Sensors and Actuators phase. Here,

some of the specification will still be at the detailed requirements phase while you are

refining the specification of a particular sensor or group of sensors and actuators.
Another case is when you abstract away certain portions of the computation. For

example, in avionics systems sometimes there are complex conditions that must be satisfied

for certain mode transitions. These often depend on control laws, continuous functions, etc.

that might not be convient to represent. Furthermore, the way in which these conditions
are met is often well understood. Thus, you might wish to put off defining exactly how

these conditions are satisfied until later in the specification effort. When this information

is added, the new parts of the specification will need to go through the phases of just like

the other parts of the specification.

6.2.2 Monitored and Controlled quantities

Sometimes, new monitored and controlled quantities will emerge as you are constructing

the preliminary behavior specification. There are several reasons why this might be the

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

6.2. NORMALITERATIONAMONGTHE PHASES 47

case.

First, you may discover that you need additional information from the environment to

be able to compute the values of the controlled quantities. These may be, for example,

operator inputs that you did not anticipate.

Second, as you study the system in more detail, it may become clear that there are

more controlled variables. For example, the system needs to accomplish 'x' but to do that,

we need to introduce a controlled variable which makes that possible.

Finally, sometimes to make it easier to say certain things about the domain it is easier

to adjust the particular choices of monitored and controlled variables rather than express

a very complex relationship between the ones that you have. For example, in a system

that monitores the fuel level in a tank, there are many different monitored quantities that

you could choose, a boolean indicating whether or not the liquid is at a certain level, a
numeric measurement of the liquid level in the tank, etc. Each of these choices are valid,

but have different implications when you construct the preliminary behavior specification

and as you refine the specification.

In general, you should think careflflly about the choice of monitored and controlled
variables but realize that you may have to revist those choices later in the specification

effort due to unforseen difficulties.

6.2.3 Draft Requirements and Requirements Structure

It is natural to switch back and forth between structuring and the requirements and de-

veloping a specification of the behavior. As you specify the behavior in more detail, you

may discover modules or pieces of the computation that may be reused accross different

sections. In addition, you may want to reorganize the computation, or refine the interfaces

of the modules. Similarly, as you develop the module structure, you may change your

ideas about how to specify the behavior, and in what order various computations need to

be performed.
The iteration between these activities is similar to the iteration that you would normally

see in an object oriented development between the creation of the class diagrams and the

creation of sequence diagrams.

6.2.4 Detailed Requirements and Prior Phases

When adding the information in the detailed requirements phase, sometimes you may

discover that the structures that you have choosen for the requirements are not conducive

to adding fault tolerance, etc. Thus, you may have to restructure or add structure to the

requirements to support these additional behaviors.

In general, it is necessary to keep these things in mind from the begining of the specifi-

cation effort, but beneficial to not get bogged down in the details when first understanding

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

48 CHAPTER6. METHODOLOGYAT A GLANCE

thesystem.Thisisadelcatebalancewhichbecomeseasierwithexperienceinspecification.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 7

Phase 1: Commonality Analysis

Today's consumers want devices and systems custom fitted to their needs and software

product-line engineering has the potential to deliver great cost savings and productivity

gains to organizations that provide families of products, as well as give those organizations

a competitive edge in the market-place. For safety-critical systems, software-product line

engineering has the potential to produce systems that are more safe than their serially

produced counterparts while being cheaper and faster overall to build.

Even if the goal of the development effort is the creation of a product family, techniques

oriented towards product families may still be used to provide for increased flexibility in

the long term. One can view the iterative version of a program that are produced through

maintenance as a product family.

Although it is certainly not a definitative reference on illiciting commonalities and

variabilities, this chapter describes how to construct a specification of the product family
within the FORMpcs method.

7.1 Goals

The commonality analysis [62] is the document that describes the product family. Any

product family may be described by listing its commonalities, i.e., those features that

are sh_ed by all members of the families, and its variabilities, i.e., those features that

are allowed to vary accross members of the family. For example, in the altitude switch

family, all family members will posses some method of assessing the current altitude of

the aircraft (using various combinations and types of altimeters). However, altimeters may

vary in terms of the quality or charaterists of the altitude that they provide (more on that

in the next sections).

The goals of this stage, then, are to do the following:

• Define the top-level family commonalities and variabilities for the system.

49

50 CHAPTER7. COMMONALITYANALYIS

• Definesub-familiesencompassingdifferentareasor dimensionsof flexibility within
theoverallfamily.

• Foreachsub-family,thecommonalitiesandvariabilitiesshouldbecohesive.

• Constructa decisionmodelfor the family.

7.2 Entrance Criteria

This is the first phase of the methodology. Before starting, you should make sure that that

you have access to domain experts who know about the systems that are present, in the
domain.

7.3 Activities

This section describes the activities that take place in the Commonality Analysis phase

of the methodology. The first objective the phase is to create a high-level description of

the family; this is described in the first section. The next two activities involve creating

commonalities and variabilities and identifying dimensions and structure in the product

line. You may find that you iterate between these three activities has your understanding
of the family progresses. Next, the family structure is refined and the decision model for

the family is specified. For more information about how to describe a product family,

see [63, 62].

7.3.1 Define the Top-Level Family

This section describes the first activity of the FORMpcs method: Defining the top-level

family that will form the basis for the specification(s) developed in the later phases. Thus,

this is an important activity. We will begin discussing this activity by describing our

running example: the altitude switch. Next, we will describe how this family is scoped for

the purposes of this methodology. Finally, this activity ends when a one to three paragraph

description of the family has been generated.

In avionics, the altitude of the aircraft is an essential environmental quantity. Many

devices on board the plane react to changes in the altitude, for example, the autopilot

must know the plane's current altitude in order to know whether to climb or descend. In

addition, there are many other devices on board the plane that rely on altitude. However,

these different devices vary greatly in the types of actions that the perform in response to

the altitude data. In addition, the types of altitude data differ significantly from system

to system and from aircraft to aircraft. We might make an intial attempt at a family

description such as the following:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 51

The ASW family consists of systems on board the aircraft that utilize the values

firm the various altimeters on board to make a choice among various options

for actions (one of which being to do nothing) and perform the chooscn action.

Our family could be viewed as a sub-family of a larger family that would include

all aspects of avionics systems. This description does describe all the systems on board

the plane that use the altitude and is therefore a good starting point for describing our

family. However, notice that the particular actions that the system performs can be largely

separated from tasks relating to measuring the altitude and fusing the results from various

different types of altimeters. We will refine this further in the next section where we talk

about the high-level commonalities and variabilities for the ASW family.
In summary, to develop the high-level definition of the product family you do the

following:

Brainstorm about the family: What systems are potentially members of this family?

What sorts of functionality do timse systems have? What are the common threads

that tie these sytems together?

• Next, develop a first pass description of the family. Have other members of the

product team and the domain experts review this description.

Finally, develop a specific, one paragraph description of the product family that

clearly conveys the basic ideas behind the systems under consideration. Be specific,

but avoid introducing too much detail.

In the next section, we will start to elaborate on our understanding of the ASW product

family by developing an initial list of eommonalities and variabilities for the ASW family.

7.3.2 Initial Commonalities and Variabilities

We can begin to develop a list of initial commonalities by examining the system descrip-

tion. Furthermore, it is unrealistic to try and list either all the commonalities or all the
variabilities at one time. Sometimes, it is easier for domain experts to identify the variabil-

ities; however, it may be difficult for them to the precise way in that the variability values

must be assigned to produce a viable family member. We denote commonalities by a 'C'

and then a number so that they can be referenced elsewhere in the document (variabilities

are noted in simliar fashion).

Generally, commonalities and variabilites can be highly related and should be grouped

together if they related to the same parts of the system description. These grouping provide

the basis for discovering the dimensions and sub-families that define the structure of the
domain.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

52 CHAPTER7. COMMONALITYANALYIS

In isoftenusefulto start out with high-levelcommonalitiesandvariabilitiesandwork
towardsamorerefineddescriptionof thefamily.Tilehigtmstlevelcommonalitiesdefinethe
boundariesof thebroadestpossibleproductfamily.Asmorecommonalitiesareadded,the
definitionof thefamilybecomesmorerefined.It isusefulto preservethosecommonalities
that definethe outermostscopeof the family theseare the least likey to changein
the futureand,thus,shoulddependonphysicalprinciplesof theessentialpurposeof the
system.

Alongthesamelines,commonalitiesandvariabilitiescanalsobeseparatedbywhether
ornot theyapplygenerallyto tile REQrelationor to theIN' andOUT' relations.This isa
usefulseparationbecausein the nextphasesof themethodology,wewill beconcentrating
on theREQrelationandwill get to tile IN' andOUT' relationsin the last phase.

Obviously,thereis muchinformationon illicitingcommonalitiesandvariabilities,man-
agingtheprocessandmeetings,etc. that wehavenot includedhere.That isa topic that
is coveredin manyotherbooksandreferences,including[63,7,35]amongothers.

All of thecommonalitiesandvariabiltiesfor theASWsystemarelistedinAppendixA.
As an example,considerthe highestlevelASWcommonalitiesand variabilitiesfor the
ASW.

C1 All ASWsystemswill havea wayto measurethe altitudeof theaircraft

C1.1TileASWsystemwill usetheinformationabouttheaircraft'saltitudeto make
a decisionasto whatactionthe ASWshouldperform

V1 Theactionsthat theASWtakesin responseto thealtitudeandthecriteriatoperform
thoseactionsvariesfromaircraft to aircraft.

Thisis reallyjust analternativewayto specifyourhigh-levelfamilydescription.Next,
weadda fewmoredetailsonhowtheASWsystemgetsits information.

V2 The numberandtype of Altimeters,devicesthat measurealtitude,on boardeach
aircraftmayvary.

V2.1 Somealtimetersprovidea numericmeasureof thealtitude (digitalaltimeters)
whereassomealtimeterssimplyindicatewhetheror not the altitudeis above
or belowa constantthresholdthat is determinedwhenthealtimeteris manu-
factured(analogaltimeters).

Now,weknowthat thereareanumberofdifferentsensorsontheaircraftthat canmea-
surealtitude(i.e.,thealtimeters)andweknowthat therearetwo typesof fundementally
differentaltimeters:analoganddigital. Wecanaddsomeinformationonhowthe ASW
handlesfusingthedata fromethesevarioussensorsintooneestimateof thealtitude:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 53

V3 In family memberswherethereis morethanonealtimeter,a varietyof smoothing
and/or thresholdingalgorithmsmaybeusedto determinethe estimatedvaluefor
the truealtitudeor estimatedvalueof whetheror not theaircraft is truelyaboveor
belowacertainthreshold.

V3.1 Methodsfor choosingnumericaltitude from severalnumericsourceswill be
mean,median,smallest,largest

V3.2 Methodsfor choosingwhetheror not the aircraft is aboveor belowa certain
thresholdfromavarietyof altimetersthat areeitherthresholdedor numericare
anyoneabove/below,all above/below,andmajority above/below.

And, wecanadd informationabouthowall altimeterson the planearesupposedto
function.

C2 All Altimeterswill providean indicationof whetheror not the suppliedaltitudeis
validor not

C2.1An altitudethat isdenotedto be invalid shall not be used in a compuation to

determine the action to be performed by the ASW

C2.2 If no altitude can be determined (i.e., all altimeters report invalide altitudes) for

a specified period of time, then the ASW will declare that the system has failed.

This period of time shall be constant for each family member (i.e., determined

at specification time).

V4 The period of time that the altitude nmst be invalid before the ASW will declare a

failure may vary from family member to family member.

Finally, there are a few more properties of the ASW family that we need to express in

relation to the various indications that the ASW should produce and user controls on the
ASW.

C3 All ASW systems will provide a failure indication to the environment.

C3.1 The indication that the ASW has failed will be the fact that the ASW has not

strobed a watchdog timer within a specified amount of time. This period of

time shall be a constant for each family member (i.e., known at specification

time).

C4 The ASW shall except an inhibit signal. While inhibited, the ASW shall not attempt
to perform any action other than declaring a failure.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

54 CHAPTER7. COMMONALITYANALYIS

C5 The ASWshallexcepta resetsignal. Whenthe resetsignalis recieved,the ASW
shallreturn to its initial state.

For the purposesof the runningexamplefor this methodology,wewill definea sub-
family of the ASW pertainingonly the ASW familymembersthat turn on or off and
particularDeviceof Intereston boardthe aircraft. By makingit a sub-family,wekeep
openthe optionof reusingall thework that wehavedonein definingcommonalitiesand
variabiltiesin altitude processingthat wehavespecifiedthusfar. Hopefully,with the
family structuredin this waytheimplementionof thesefeatureswill alsobereusable.

Wedenotethecommonalitiesandvariabilitiesfor theDOIsubfamilyasCDOIandVDoI
respectively.

CDOI1 The ASW shall change the status (turn on or off) a Device of Interest (DOI) when
it crosses a certain threshold

VDOI 1 The threshold for the ASW varies from 0 to 8024 feet from aircraft to aircraft

VDOI2 Whether the ASW turns on/off the DOI when passing above/below the threshold

is a variability with nine possible choices:

• do nothing going above or below;

• turn on going below, do nothing going above;

• turn off going below, do nothing going above;

• do nothing going below, turn on going above;

• turn on going below, turn on going above;

• turn off going below, turn on going above;

• do nothing going below, turn off going above;

• turn oi1 going below, turn off going above; or,

• turn off going below, turn off going above;

To deal with noisy data, or the aircraft flying near to the threshold altitude, the DOI

controlling ASW needs to have a certain hysteresis factor that is used to deterimine how

much the altitude of the plane must change in order to have the DOI powered on or off

again. The commonalities and variabilities that govern the hysteresis function of the ASW

are given below.

CDOI2 The ASW shall employ a hystersis factor to ensure that when the aircraft is flying

at approximately the threshold altitude noisy data from the altimeters or slight vari-

ations in altitude do not cause the ASW to turn on/off the DOI in rapid succession

VDOI3 The hysteresis factor may vary from aircraft to aircraft

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 55

VDOI 4 The hysteresis factor may vary depending whether or not the aircraft is going above
or below the threshold.

CDOI3 Both the hysteresis factor for going above and the hysteresis factor for going below

shall be a constant for each particular aircraft (i.e., known at specification time).

Finally, the ASW will received updates from the DOI whenever that status of the

DOI changes. This is important to confirm whether or not the DOI is responding to

the commands issued by the ASW as well a,s fofill the requirement denoted by the final

commonality.

CDoI4 The DOI shall give the ASW an indication of its status (on or off) whenever that

status changes

CDOI5 Whenever the ASW submits a command to the DOI, it shall wait for a specified

period of time for the status of the DOI to change to reflect the command. If the

status does not change within the specified period of time, then the ASW shall declare

a failure. Tile period of time will be a constant for each aircraft

VDOI5 The period of time that the ASW will wait after issuing a command to the DOI

before indicating a failure if tile DOI does not change status shall vary from aircraft
to aircraft.

CDOI6 The ASW shall not attempt to power on tile DOI if the DOI is already on or

attempt to power off the DOI if the DOI is already off.

In tile next section, we discuss how to view the structure of the ASW family that we
have started to define.

7.3.3 Identify Family Structure

Even for a family as small and simple as the ASW, we can identify elements of structure

in the family. This identification is useful because it helps us to understand the family

and it is invaluable if, in the future, we would like to refactor the family or incorporate

the family as a part of a larger family. For example, we might like to have one family that

encompasses all the avionics devices built (not just the ASW).

When you are writting a lot of commonalities that start with the word "if" you may

consider making a sub-family. For example, we could have written all the DOI common-

alities as "If the action to be formed is turning on or off a DOI, then ..." However, this is

wordy; and, when the family structure becomes more complex it is very difficult to under-

stand the commonalities. It is often better to define a subfamily when there are conditions
on the commonalites.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

56 CHAPTER7. COMMONALITYANALYIS

J

Majodty Above Threshold

Majodty Below Threshold

Any One Above Threshold

Any One Below Threshold

All Above Threshold

All Below Threshold

..._..._...._....__÷...,...._,....$..._...........

.....,...,.'....÷...._....,...+...._....._....+...........

.....,..._.....,....._...,.._,....,...._...._
! ! i E i i i E !

-o- -0 • 0- 0- -0 • 0- o

.....,..._....¢...._...._..._...._...._...._
i i ! i i i i i i

....._..._....¢...._..._..._....¢...._..._

Numeric Least _.....] T _..... _..... _..... "_...... _..... ;............

Numeric Greatest ! i t i i i i i !

i i i i i i i i i
 ,, edo a ,an......i.....i..........i.....!.....i.....i......i.....i............
_o._A_are_a......i.....i.....,_.....i.....i.....i.....i......i.....i....._......

! i ! ! ', i i i i i _

a,_ _,_ _e_ o_".if' ,.o_" o_ _ c_ "_

,_ _e'%o_'" o_'._._.'_' o_"._"
o<'"o_",,÷°_.,o-"_o* ÷o.,,o-_.,,o-_

Figure 7.1: The ASW family structure visualized in 2 dimensions

Diminensions of the family, are used as a visualization technique to separate out the

major choices of the family. Dividing a family into dimensions does not necessarily mean

partitioning all the commonalities and variabilities of the family. For the ASW, we identi-
fied two possible dimensions: 1) the choice of the altitude smoottfing and/or thresholdin_

algorithm and 2) the major choice of functionality for the DOI. This decomposition is show

in Figure 7.1.

Figure 7.1 depicts the various possible members of the ASW family, as we have currently

defined it in the phase 1 appendix. An interesting property of the figure is that there are no

fanfily members currently that use the numeric altitude methods that we dicussed in the

commonalities and variabilities. This is because we have only looked at a small sub-family

of the possible behaviors of the ASW family. In the future, we can envision adding all sorts

of behaviors some of which might use the numeric methods.

The reader might note that the dimension of the family that shows the choice of smooth-

ing or thresholding algorithms has some structure. That is, either the algorithm will have

a numeric result and be a smoothing algorithm or it will have a boolean result and be a

thresholding algorithm. This structure is visualized in Figure 7.2.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.3. ACTIVITIES 57

ASW Alt#ude

Algo_hm
Dimension

M D_d_

o-' 1l I 1l A,,
Figure 7.2: The structure of the Altitude Dimension for the ASW

Visualizing the structure of the family in this way can be useful in developing a better

understanding of the system. You may find that some commonalities should be made

into more general statements and moved to the top-level family. Alternatively, you may

discover that certain commonalities and variabilites may be very tied to the current way

of doing things and likely to change. Timse, you may wish to isolate by placing them in a

subfamily. In the next section, we dicuss how to refine the family specifications.

7.3.4 Elaborate Variabilities and Commonalities

In the next phase of developing the family description the commonalities and (especially)

the variabilities should be refined so that they contain actual quantities (or choices) for
the variations. This was done for one of the DOI variabilities above, but values should be
filled in for other variabilities as well.

For example, we might like to refine rtEF VAR 4 SO that we specify the tolerances on

the failure indication time for the family.

V4 The period of time that the altitude nmst be invalid before the ASW will declare a

failure may vary between 2 seconds and 10 seconds from family member to family
member.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

58 CHAPTER 7. COMMONALITY ANALYIS

7.3.5 Define the Decision Model

The decision model represents a recording of which choices for all the possible variabilities

result in current family members. Obviously, the more complex the structure of the family,

the more complex the decision model will be.

Building the decision model can often help to identify commonalities or variabilities

that may have been forgotten in the initiation draft of the family requirements. This

is because engineers, familar with the products, may recall items that must be specified

about a particular family members that they did not recall when attempting to generalize

to all family members. For example, in our first draft of the ASW commonalities and

variabilities, we had forgotten to add a variability to the DOI subfamily for the threshold.

One way that the decision model can be written down is by simply noting which choices

are made for each family member. For ttle ASW family, we have done that below for several

ASW family members.

CS-123: This aircraft as one analog and one digital altimeter, turns on the DOI

when at least one altimeter is below 2000 feet, will not turn the DOI back on until

going 200 ft above the threshold, has a timeout of 4 seconds for altitude staleness
and 2 seconds for tile DOI.

CS-134: This aircraft as one analog and two digital altimeter, turns on the DOI

when at least one altimeter is below 2000 feet, will not turn the DOI back on until

going 200 ft above the threshold, has a timeout of 4 seconds for altitude staleness
and 2 seconds for the DOI.

DD-123: This aircraft as one analog and one digital altimeter, turns on the DOI

when at least one altimeter is below 2000 feet, will not turn the DOI back on until

going 250 ft above the threshold, has a timeout of 2 seconds for altitude staleness
and 2 seconds for the DOI.

Even so, there are a number of disadvantages to listing the family member config-

urations in this way. First, it is difficult to tell whether all required variabilities have

been given values. Second, it is difficult to easily see family members that have the same

choices for the variability values. A tabular format is often used to represent the decision
model. A tabular decision model for the ASW family members that we will consider in

this methodology is presented in Figure 7.3.

In a family with a more complex structure, a hierarchical series of tables might be used

with one table for each sub-family, for example.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

7.4. EVALUATIONCRITERIA 59

Variability CS-123 CS-134 DD-123 DD-134 EF-155

of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3

Threshold Algo. Any Any Any Majority Majority
Invalid Alt. Failure 4 s 2 s 2 s 2 s 2 s

Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft

Go Above Action None None None None _ihrn Off

Go Below Action Turn On Turn On Turn On Turn On Turn On

Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft

Go Below Hyst. NA NA NA NA 200 ft

DOI timeout 2 s 2 s 2 s 2 s 2 s

Figure 7.3: A tabular representation of the ASW family decision model

7.4 Evaluation Criteria

It is difficult to tell whether or not a list of commonalities and variabilities is "good" or

"bad." Nevertheless, many of the same criteria that apply to requirements can be applied
to commonalities and variabilities.

For each commonality, a review should be conducted to determine the following:

• Is the commonality truely common for the subfamily underwhich it is defined? If

not, then the family should be refactored.

• Can the commonality be moved to any other, larger subfamily?

Similarly, for each variability a review should be conducted

• Do parameters of variation need to be specified for this variability?

• If parameters of variation are necessary, are all known variation values included?

In addition to evaluation of the commonalities and variabilities, the analyst also needs

to evaluate the structure of the family that has been created at this point. The analyst

should look at each sub-family and dimension that has been expressed in the commonality

analysis and determine the following:

• What does this sub-family or dimension mean in tile context of my system?

• Does this sub-family or dimension contribute to understanding of the system?

Some sub-families or dimensions that are possible, may not be meaningful and therefore,
can be discarded.

Finally, you should have a completely specified decision model for the family.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

60 CHAPTER7. COMMONALITYANALYIS

7.5 Exit Criteria

• Each commonality and variability passes the evaluation criteria.

• The family structure (sub-families and dimensions) meets the criteria outlined above.

• The decision model has been created.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 8

Phase 2: Identify Environmental
Variables

This chapter describes how to take the description of the family developed in the last

chapter and create a list of the environmental quantities which are, in some sense, important

to the proposed chapter.

In this chapter, we will explore the types of environmental quantities (introduced Chap-

ter 4) used in the system. Fundementally, these are quantities which are either used by the

system, i.e., monitored quantities, or are affected by the system, i.e., controlled quantites.

We will also explore the ways in which the environmental quantities can vary, the absense

of the proposed system (i.e., without any control).

8.1 Goals

The focus of this chapter is first to identify the monitored and controled quantities and then

to describe them in such a way that the resultant list will form an interface between the

proposed system and its environment. Furthermore, we desire to develop an understanding

of how the physical environment behaves. Therefore, the goals of this phase are

• To develop a complete list of all the environmental quantities needed by the system so

that it can know what the required behavior should be (i.e., the monitored quantities),

• To develop a complete list of all the environmental quantities needed by the system

so that it can accomplish the control necessary to achieve the requirements (i.e., the

controlled quantities),

• To identify the existing relationships between the monitoried and controlled quanti-
ties.

61

62 CHAPTER8. ENVIRONMENTALVARIABLES

8.2 Entrance Criteria

Before starting this phase, you should have

• The completed product family specification developed in the first phase.

• An idea of the devices which will be used in the system (if possible or available).

• Access to domain experts.

8.3 Activities

The activities for this phase of the methodology follow in a straightforward fashion from

the goals outlined above: identifying monitored and controlled variables and then defining

them and their inter-relationships. Although we have separated out these tasks below, in

practice you will most likely iterate between the activities as your understanding of the

system developes.

8.3.1 Identifying Controlled Variables

The focus of this activity is to identify the environmental quantities that are under the

system's control. Many environmental quantities will be mentioned in the commonalities
and variabilities were created in the previous phase. Now, the key is to recognize those

quantities and start to write them down.

In general, the question to ask when identifing controlled variables is: what do I want the

system to be able to do? A good potential source of information about controlled variables

might by an existing system specification. However, care must be taken that environmental

quantities are captured, rather than values which might be tied to particular actuators in

the system.
Controlled quantities can be broken down into several different types. This will help

us in identifying them. The types of controlled variables are:

• Environmental Quantities: These are values in the environment that you wish

to change as a result of the some action of the system. These should not be tied to

any particular actuators, but should represent actions that that system is capable of

performing.

• User Displays: These are values that need to be displayed to the user. These sort

of controlled variables often represent indicator lights, gauges, etc. that are present

in the physical system. Their purpose is to help the user develop a mental model

about the state of tile system being controlled; thus, indicates of the state of tile
controler are also often included.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.3. ACTIVITIES 63

• Values for Another Subsystem: Thesearevaluesthat goto anothersubsystem.
Youwill seethesesortsof controlledvariableswhenyouarespecifyingonepieceout
of asystemor subsystemandtherearecertaindetailsthat mustbeabstractedaway.

In the ASW,the first controlledvariablethat comesto mind is the stateof the DOI
state,whichcanbesetbytheASW.Asit happens,theDOI isan interestingcase,because
thestateof theDGI isbothcontrolledand monitored by the ASW. This is due to the fact

that other systems can control DOI. In terms of our catagories of controlled variables, the

DOI fits best as an environmental variable. The DOI is something which will exist on the

aircraft presumably whether or not the ASW is on board.
Another controlled variable is the failure indication of the ASW. The ASW is required

to supply an indication of whether or not it is operating correctly. Therefor, a controlled

variable is required to support this indication. In terms of the catagories, the failure

indication fits best as a user display, but could also be viewed as a subsystem interface

because it may be used by either component on board the aircraft.

In summary, the controlled variables represent those pieces of the interface between

the environment on tile controller that can be manipulated by the controller to affect the

environment. Controlled variables fall into several catagories: environemental quantities,

user displays, and values for other subsystems. For the ASW, we discovered two con-
trolled variables: the DOI status which was an environmental quantity and the the failure

indication which was more of a user display.

8.3.2 Identifying Monitored Variables

In addition to controlled variables, we must also identify the quantities which the system

must monitor. In general, the best approach is to look at the controlled quantities and

ask the question: what information do I need to determine what the value this controlled

variable? This should lead you to the monitored variables. Another approach, if this is an

existing system, is to examine the sensors that are used and ask: what sort of information
about the environment is given to me by these sensors?

Monitored quantities, similar to controlled quantities, can be broken down into several

different types. This will help us in identifying them. The types of Monitored variables
are:

• Environmental Quantities: Values or conditions that exist in the environment

and are observable that you can use to compute the values of controlled variables.

• User set-points: Values that are specified by the user of the system. These values

change the way in which you compute the controlled quantities.

• Abstracted quantities: values that you expect to receive from another subsystem

that you introduce because you want to concentrate on the current subsystem.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

64 CHAPTER 8. ENVIRONMENTAL VARIABLES

• Quality Indications: These are variables which indicate the quality or obserabil-

ity of other monitored variables. These variables are often Boolean, for example,

indicating that you can or cannot know the altitude.

Certainly, the most obvious monitored quanitiy in the ASW is that of the Altitude.

This is clearly an environmental quantity, because the plan will have some altitude whether
or not the ASW is present. In addition, we know that eventually we will have some kind

of sensors in the system that actually measure the altitude. Thus, it is possible that there

will times when the Mitude will not be measurable, for example, if the sensors are failed.

Therefor, another monitored variable is the Altitude_Quality variable.

8.3.3 Define the Variables

The monitored and controlled variables represent the interface of the system requirements,

the REQ relation, to the environment. It is important to capture the essential information

about each variable. Many important quantities to capture about input and output values

were noted in [57] and also in [34]. In tile FORMpcs we have provided a template [or the
user to specify the following information:

Name and purpose. The purpose should include a statement about the physical

meaning of the variable as well as the rational for why this is a monitored or controlled

quantity.

• The type: boolean, floating point, integer, or enumerated

• The expected minium (if numeric)

• The expected maximum (if numeric)

• The units

A description of the meaning of each enumeration (if enumerated), or a description

of the precision or other physical characteristics required if numeric with physical
units.

In addition to the above information, you may also want to note the precision that the

requirements are required to maintain about the variables.

If some of this information is not available yet (e.g., the expected minimum and maxi-

mum) do not worry. Specify it as UNDEFINED for now and leave that choice for later in

the process. Do not make up non-sensical values for these values: it is far better to have

UNDEFINED listed than to have a non-sensical value propgated through the requirements

process (and even, potentially, into design and implementation).

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.3. ACTIVITIES 65

Forcontrolledvariables,youwill alsowantto specifya shortdescriptionof thecondi-
tionsunderwhichthe variablecantakeon its variousvalues.For examle,if a particular
variablecan be eittler "on" or "off", what conditions cause it to take on these values. This

activity will help you in later states as you refine this informal description of each controlled

variable into a formal description of the REQ relation (and later the SOFT relation).

As you begin to define the conditions under which each variable takes on its various

values, you may find that even with these informal descriptions you can find previously

overlooked errors in your conceptions of the requirements. If these sorts of issues arrise,

you should list them at the end of the variable definition, until they can be resolved.

Figure 8.1 shows an example of a controlled variable specification from this phase of

the ASW development. It shows the definition of the DOI variable as desribed above.

Figure 8.2 shows the MON_Altitude variable from this phase.

This activity centers around starting to fill in the details about the monitored and
controlled variables which were identified. It is normal for some information to be unknown

at this point; however, resist the temptation to simply make up a value in these cases.

Instead, try to define unknown quantities as UNDEFINED and list this lack of knowledge

as an issue h_r that particular variable. This ensures that these issues will be resolved at

some later point in the effort, and not just be forgotten.

8.3.4 Define Relationships Among Variables

In this activity, you will denote the relationships between the monitored and controlled

variables that exist as part of the environment (and in the absense of the proposed system).

Thus, by this activity we are encoding the NAT relation.

A system context diagram is helpful in starting to think about the environment of the

system. This is a diagram which shows each input and output to the system. The key in

capturing the NAT relation is to begin to think about how the rectangular boxes (i.e, the

monitored and controlled variable sources) interact with one another in the environment.

Figure 8.3 shows the system context diagram for the ASW.

Michael Jackson provides some good guidance on how to identify the actors in the

environment that the system interacts with in his books [29, 31]. Jackson builds on the

system context diagram to include techniques for identifying and describing the interaction

of the system with its environment. That work is complementary to this methodology, and

will not be reproduced here.

In addition, some points to consider when specifying the NAT relation are the following:

• Identify how quickly a monitored or controlled variable may change. For example,

altitude cannot change from 0 to 10,000 ft in one second.

• Identify relationships between variabls. For example, if variable X has value y then

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

66 CHAPTER8. ENVIRONMENTALVARIABLES

I STATE VARIABLE]

CON_DOI_P2

Parent: NONE

Possible Values: On, Off, Uncommanded

Initial Value: UNDEFINED

Classified as: Controlled

Purpose: This variable represents the ASW's commanded status of the De-

vice of Interest (DOI).

Interpretation:

On: Indicates that the DOI is commanded to be On. The DOI is

commanded to be on when the aircraft enters the target region

for turning the DOI on, the DOI is not already on, and the ASW
is not inhibitied.

Off: Indicates that the DOI is commanded to be Off. The DOI is

commanded to be off when the aircraft leaves the target region

and after a certain period of time has passed. If this time is

UNDEFINED, then the ASW will never turn the DOI Off.
Uncommanded: Indicates that the DOI is not commanded by the

ASW. This CON_DOI variable will be equal to Uncommanded in

any step were the ASW does not issue a command to the device
of interest.

Issues;

• If the aircraft leaves the target area and the DOI is on, but was not

commanded to be on by the ASW, should the ASW turn it off?

Figure 8.1: The CON_DOI variable in Phase 2 of the methodology

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.3. ACTIVITIES 67

INPUT VARIABLE]

MON_Altitude_P2

Type: INTEGER

Initial Value: UNDEFINED

Units: ft

Expected Minimum Value: 0

Expected Maximum Value: 50000

Classified as: Monitored

Purpose: This variable represents the ASW's idea of what the altitude of

the aircraft is. It is related to the Altitude_Quality variable.

Interpretation:

Precision: We will know the altitude to within :kl0 ft.

Figure 8.2: The MON_Altitute variable in Phase 2 of the methodology

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

68 CHAPTER8. ENVIRONMENTALVARIABLES

I DOI I

con °::NAttue
MON_Reset MON Inhibit

 [Operat°r 1

Aircraft

Figure 8.3: The System Context Diagram for the ASW in this Phase

variable Z cannot have value q. These conditions, which should hold over the whole

system, should be noted as assertation.

These constraints between the variables will be usefull in the development of the REQ

relation in the following phases and also later to provide as inputs to static analysis. The

NAT relation might be represented as simply a series of conditions or equations that are

always true about the environment; or, that type of specification may be combined with a

language similar to the language used to specify the REQ relation. This choice is highly

dependent on what level of formality and/or detail is desired in the NAT relation as well
as who suitable to the languages involved are to representing NAT. Therefore, it is highly

dependent on the particular system involved.

In any event, because the NAT and REQ relations are intimately related, it will proba-

bly be necessary to revisit the NAT relation upon further investigation of the REQ relation.

8.4 Evaluation Criteria

For each monitored and controlled variable, the following questions should be answered:

,, Does the definition of each monitored and controlled quantity contain a description

of its units, rational for including it in the list of environmental quaxltities, ways in

which the environment of the system constrains its values.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

8.5. EXIT CRITERIA 69

• Forcontrolledvariables,doesthereexistmonitoredquantitieswhichwouldallowthe
computationof thecorrectvalueof thecontrolledvariable.

• DoestheNAT relationgivenadaquatelyspecifythecontraintsonthemonitoredand
controlledvariables?

8.5 Exit Criteria

At the end of this phase, you have essentially defined the interface for a module that will

encapsulate the REQ relation. The only element that we |lave not talked about explictly

is the points at which each family member differs. This phase is complete when

• A list of environmental quantities has been developed

• A specification of the how the environment or the values of other variables accompa-
nies each variable in the list.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

70 CHAPTER8. ENVIRONMENTALVARIABLES

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 9

Phase 3: Initial Requirements
Structure

In this chapter the commonalities and variabilities developed in the first phase will be

combined with the monitored and controlled variabled discovered in the previous phase to

form the basis to reason about what the high-level structure of the REQ relation should
be.

This high-level structure will represent the module structure in a language that supports

module encapsulation. In a language that does not support encapsulation, the specifier

will have to manually provide for points in the specification so that pieces can be easily

separated.

9.1 Goals

The goal of this chapter is to make establish a high-level structure for the requirements.

• Establish a structure for the requirelnents, grouping together those entities in the

draft specification which "belong" together in some sense.

• Avoid the introduction of design details while structuring the requirements.

• Support the reuse of pieces of the draft specification and, also, support the families

and sub-families developed in phase 1, the Commonality Analysis.

9.2 Entrance Criteria

Before entering the structuring phase, you will need the following:

71

72 CHAPTER 9. INITIAL STRUCTURE

• Family and sub-family relationships from phase 1

• Environmental variables fl'om phase 2

9.3 Activities

The activities in this phase involve getting a broad overview of the computeration that

will be preformed as well as defining modules to perform the computation. This phase is

tightly coupled with the draft requirements phase of the next chapter and you will most

likely find that you shall iterate between these phases.

9.3.1 Define Dependancy Relationships

In this activity, you identify which monitored variables and modes are necessary for the

computation of each controlled variable. The goal of this activity is not to produce a

detailed graph; although if one does not have a tool-supported language that work may

have to be done by hand. Rather, the goal is to formulate a solid idea of the order in

which entities in the system must be computed so that there are no circular dependencies
between the various variables.

The first step is to make a sort list in each controlled variable definition of which other

controlled variables, monitored variables, and mode machines it depends upon. Then you

can go through and see any controlled variables depend on each other, or if any mode

machines depend circularly on controlled variables.

Circular dependencies must be resolved in some way. One way to resolve them is to
use the PRE value for one of the variables. That is, instead of using the value of the

variable which will be computed during this step, you use the value that the variable had

at the start of the computation (which, obviously, can be known without any computation

and therefore does not introduce a circular execution dependency). Care must be taken to

ensure that one can, in fact, use the PRE values - note that they will always be "one step

behind" in some sense. It is not desirable to have a specification which takes more than

one step to settle into a valid value; each step of the specification must result in a valid

and meaningful set of controlled variable values.

Often, it is helpful to view a large specification as a series of functional blocks. The

different blocks can then be drilled down into in a functional-decomposition type style. In

addition, these functional blocks may be candidates to be made into modules.

9.3.2 Define Modules and Interfaces

In the preceeding section, we identified the rough dependency relationships for the REQ

specification. In this activity, we will use the dependency relationships to start to group

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

9.4. EVALUATIONCRITERIA 73

piecesof thecomputationtogetherto formmodules.
Parnas[50]defineda criterato beusedin decomposinga systeminto modulescalled

informationhiding.Usingthis philosophy,everymodulein thesystemshouldbechoosen
soasto encapsulateadecisionor severaldecisionsaboutthesystem.Theinterfaceofsuch
amoduleexposesonlytheessentialinformationthat therestof thespecificationrequires.
It hasbeensuggestedin CoRE[57]that a methodfor determiningwhichdecisionsshould
begroupedtogethershouldbewhethertheyareexpectedto changetogether.

Anotherway to viewa moduleis asan additionto the vocabularythat youuseto
expresstherequirements.Thisis thereasoningthat liesbehindthestandardmodulesused
in functionaldeclarationstylein theRSML-e language.A modulemayallowthespecifier
mapto a constructin thephysicaldomainto asingleconstructin the specification.

Onebuilding blockthat we might like for the ASW is a modulethat exportsthe
thresholdedaltitude taking into considerationthe hysteresisfactor that is required.We
will thenbeableto usesucha moduleto makedecisionsaboutwhetherto turn theASW
onor off. Thedefinitionof the interfaceto this moduleisshownin Figure9.1.

After startingworkon the draft specification,werealizedfor the ASWthat in order
to properlyspecficythe resetbehaviorof thesystemin RSML-e, wehadto providefor a
top-levelASWmodeandanoperatingmodule.This isanexampleof howiterationoccurs
betweenthesetwophases.

9.4 Evaluation Criteria

• Each module should have a purpose. The start of a module block should include

a paragraph describing what the purpose of the module is and why it imports and

exports certain values.

• Each import and export should have a purpose within the module.

9.5 Exit Criteria

You are done with the Requirements Structure phase when you all the modules in the

system pass the above evaluation criteria. The products of the Requirements Structure

phase are the following:

• A series of module definitions (see above)

• A diagram of the structure of the specification.

• A specification of how each import of every module is provided by the enclosing scope

(i.e., the specific module interconnections).

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

74 CHAPTER9. INITIAL STRUCTURE

MODULE ThresholdedAltitude_P3 :

INTERFACE :

IMPORT Altitude_P3 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTEDMAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P3 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Hysteresis_P3 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT Direction P3 : UpDownType

Purpose : &*L This parameter tells the thresholding algorithm

which direction we are interested in applying the hysteresis

to. If the direction is specified as Down, then we will have to

go above threshold altitude by the hysteresis amount before we

can declare that we are above (and, thus, be allowed to declare

below again). L*&

END IMPORT

EXPORT AboveOrBelow : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

END DEFINTION

END MODULE

Figure 9.h Module Defined to threshold altitude

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 10

Phase 4: Draft Requirements

Specification

In this chapter, a prelimary draft of the requirements specification will be constructed.

While the examples in this and later chapters are given in RSML -e, the guidance on which

aspects of the system to concentrate on and how to evaluate the work should be applicable

to a wide variety of languages.

10.1 Goals

The goal of this phase is to capture the essential behavior of the system: what was the

system meant to do. For the time being, we will put on the back burner questions of

fault tolerance, error conditions, etc. These will be delt with in more detail after we have

developed a good normal-case understanding of the system.

In the previous chapter, we blocked out the computation of the REQ relatoin. The

specific goals of this section, then, are the following:

• Define how each module will be computed from inputs to outputs

• To define how each controlled variable is computed under normal operating condi-
t ions.

• To define when each controlled variable must be computed (i.e., on demand or peri-

odic).

• To define how and when each monitored variable will be recorded from the environ-

ment.

• To remove unnecessary monitored and controlled quantities.

75

76 CHAPTER10. DRAFT REQUIREMENTS

10.2 Entrance Criteria

Before staring to work on the draft behavior specification, you should have completed

identification of the monitored and controlled quantities from the previous section. Thus,

you should have the following:

• The initiation specifiation structure from the previous phase.

• A list of the monitored and controlled quantities in the system.

• A specification of the NAT relation, i.e., a specification of the existing relationships
between the monitored and controlled quantities.

10.3 Activities

The activities in this section focus on refining the informal specification of how each con-

trolled variable takes on each of its values to a formal specification of this information.

The goal is to provide a detailed and formal specification such that given a set of values
for the monitored variables, a set of values for the controlled variables can be known.

In practice, you may iterate between this phase and the previous phase as your un-

derstanding of the system increases. In addition, you may wish to define modules to use

within the computation of other modules. In which case, you would use the module creation

guidelines in the previous phase to help decide which modules you needed.

10.3.1 Specify Each Controlled Variable

In this activity, you will specify formally how each controlled variable assumes its various

values. This activity is a natural extension of the previous one, because it involves not only

thinking about what values are necessary to compute the controlled variables, but exactly

how those variables contribute to the controlled values. Furthermore, you may also iterate

between this activity and identifying potential modes because you may discover the need

to keep some system state or system mode information as you try to determine what values
the controlled variables should be.

There are two main styles for defining a state variable in a system: the transitional

style and the equivalence style. These two styles are explained in the following paragraphs,

with examples.

Equivalence-Style Specifications: Equivalence-style specification of a state variable

is, perhaps, the most straightforward. In this style, the specifier states explicitly in a series
of cases what value the state variable assumes. The value of the variable is, thus, always

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.3. ACTIVITIES 77

definedunlessexplicitlynotedotherwiseby thespecifieror unlessit is a childunderneath
anotherstatevariable.

Foranycomputationof the specification,it is expectedthat oneandonly onecaseof
the variablewill be true; the statevariablethenassumesthe valuespecifiedby the one
uniquecase.If thestatevariabledoesnot havea casewhichevalutesto true in somestep,
thenwesaythat thevariabledefinitionis incomplete because for the particular sequence

of inputs events leading up to this step the variable does not have a defined value. If the

state variable has more than one case which is true then we say that tile specification is

inconsistent; how can we know which case is the one that was intented by the specifier?

Variables specified in this way are similar to condition tables in SCR.

An example from the ASW of a equivalence-style specification is the CON_Failure

variable (below, from phase 4). In this case, we want to declare a failure of the ASW as

soon as one of our designated failure conditions exists and stays in the failure mode until
a reset occurs.

EXPORT CON_Failure_P4 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS TRUE IF

TABLE

DURATION(AttemptingOn(), 0 S, Clock) > DOI_Timeout_P4 : T * * * ;

DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P4 : * T * * ;

DURATION(MON_Altitude_Quality_P4 = Invalid, 0 S, Clock) : * * T * ;

PKE(CON_Failure_P4) = False • * * * T ;

END TABLE

EQUALS FALSE IF

TABLE

DURATION(AttemptingOn(), 0 S, Clock) > DOI_Timeout_P4 : F ;

DURATION(AttemptingOff(), 0 S, Clock) > DOI Timeout P4 : F ;

DURATION(MON Altitude Quality P4 = Invalid, 0 S, Clock) : F ;

PRE(CON Failure_P4) = False : F ;

END TABLE

END EXPORT

Transitional-Style Specifications: Sometimes, we are not so interested in what values

a variable should have in each step but, rather, it is desireable to specify when the variable

should change values. A transitional-style specification consists of a series of transitions,

each with a source state, a destination state, and a condition. When the condition is true

and the variable has tile value specified by the source state, then tile variable will become

the value specified by the destination state.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

78 CHAPTER10. DRAFT REQUIREMENTS

Somelanguagesincludethenotionof a triggeringeventfor transitions(RSML-e does
not). In theselanguages,atransitionis takenwith thetriggeringeventoccurs(andpossibly
whenthegaurdingconditionis true in additionto thetriggerhappening).However,much
semanticinformationcanbeembeddedin sucheventsandwefind that it is preferrableto
stateexplicitly the conditionsunderwhichaneventoccurs.Therefore,in RSML-e (and
similarlanguages)aneventis simplythat a setof conditionsaretrue in this stepwhich
werenot true in thepreviousstep(or vice-versa).

Transitional-style specifications can share the same notion of consistency as equivalence-

type specifications. Nevertheless, for a transitional-style specification, it is usually expected

that the variable will retain its current value in the absence of any need to change. There-

fore, transitional-style specifications cannot make use of the notion of completeness because

it is expected that there will be some steps (probably many steps) in which the none of
the transitions evaluate to true.

Although the topic can be debated, the notion of completeness can be extended to

transitional-style specifications if we require the specifier to include transitions in the spec-

ification from each state back to itself which will be taken in steps were we do not wish

the variable to change value.

An example from the ASW of a transition style specification is the CON_DOI variable

(below, from phase 4).

EXPOKT CON_DOI_P4 :

PARENT : NONE

DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

TABLE

DOI_Action_Ok(On) : T T ;

WHEN(ThresholdedAlt_P4.Kesult_P4 = Below, False) : T * ;

GoBelowAction = TurnOn : T * ;

WHEN(ThresholdedAlt_P4.Result_P4 = Above, False) : * T ;

GoAboveAction = TurnOn • * T ;

END TABLE

TRANSITION Uncommanded TO Off IF

TABLE

DOI_Action_Ok(Off) : T T ;

WHEN(ThresholdedAlt_P4.Result_P4 = Below, False) : T * ;

GoBelowAction = TurnOff : T * ;

WHEN(ThresholdedAlt_P4.Result_P4 = Above, False) : * T ;

GoAboveAction = TurnOff • * T ;

END TABLE

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P4 = On, False)

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.3. ACTIVITIES 79

TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P4 = Off, False)

END EXPOKT

10.3.2 Identify Potential Modes

In this activity, you will examine the informal descriptions of how each controlled variable

takes on its values and begin to identify potential modes of the system. The first step
in this activity is to make a list of what information is necessary to compute each con-

trolled variable. Some of this information will be monitored variables, or previous values

of monitored variables. Other information that may be needed might include the results

of previous computations on the monitored variables.

In general, modes of the system are points at which changes of the values of the mon-

itored variables causes changes of the values of controlled variables. For example, a con-

trolled variable might depend on a specific series of user inputs are events before it can

take on a particular value; thus, we will require a mode machine of some kind which will

record for us where in the sequence of actions we are and what input we expect to occur
next.

A concrete example is that of a weapons firing interlock. It is usually true a number

of conditions must become true before pressing the 'fire' button will cause the weapon

to fire, for example, perhaps that airplane must be traveling at a particular speed, or at

least a certain altitude. Furthermore, it is usually not desirable to have the press of the
firing button precede these events: what if the firing button is stuck down and we cross a

threshold altitude which makes the preconditions true? We probably do not want to fire

in that case. To model this type of behavior, we must store internal state information so

that we can track where in the squence we are.

Modes partition of the functionality of the system. When a mode variable has one

value, the system behaves in one way and when the mode has a different value, the system

behaves in another way. The above example of a squence of values is not the only time
when this occurs. For example, in the ASW, a mode of the system is whether or not tile

ASW is inhibited. If the ASW is inhibitied, then it will not turn on the DOI regardless of

crossing a threshold altitude; if it is not inhibited, then it will attempted to turn on the
DOI when passing below the threshold.

Modes may represent some alternate or reduced functionalty operation of the system.

For example, many systems have a startup or shutdown ,node in addition to the normal

operation mode. Another example is when a system has some reduced functionality modes;

for example, when the values of some environmental quantities are not available, the system

may only be allowed to perform a subset of the available actions.

Finally, modes may be introduced to represent to the enivironment or controller what

the system is doing. For example, in an aircraft, the various systems can be on autopilot,

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

80 CHAPTER10. DRAFT REQUIREMENTS

or in landingor take-offmodes.If thesystembeingbuilt is responsiblefor implementing
oneor moreof these**lodes,then it will be usefulto representthem explicitly in the
requirementsbecausethey arethe languagein whichthe customerwill bemostableto
communicate.In addition, it will be a commondesireto statepropertiesaboutthese
modes,for example," the systemwill not lowerthe landinggearwhilein take-offmode."

Therearea mlmberof examplesof variableswhichmightbeconsideredmodesin the
ASWspecification.Thefirst that comesto mindis theASW_System_Modevariable(below,
fromphase4). ThisvariablecontrollstheoverallfunctioningoftheASW.Although,in this
case,thereisonlytheresetmode(andthat modehasnoflmctionality),thissamestructure
couldbeusedto representastartupandshutdownmode,or it couldbeusedto represent
differentmodesof reducedfunctionalitysimplybyaddedvaluesto theASW_System_Mode
variableandthendefiningappropriatebehaviorfor thosemodes.Usingthe modulecon-
struct (or cut andpaste)it is possibleto allowmodesto sharefunctionalitywhilestill
differingsignificantlyin someareas.

STATE_VARIABLE ASW_System_Mode_P4 :

VALUES : {Reset, Operating}

PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

behavior. L*&

DEFAULT_VALUE : Operating

TRANSITION Operating TO Reset IF

WHEN(MON_Reset_P4, False)

TRANSITION Reset TO Operating IF

DUBATION(PRE(ASW_System_Mode_P4), 0 s, Clock) >= 0 S

END STATE_VARIABLE

Another example of variable that functions as a mode is the ApplyHisteresis vari-
able that is defined inside of the ThresholdedAltitude_P4 module. This mode determines

whether or not the system should apply the Histeresis factor when determining whether

the aircraft is above or below the threshold.

STATE_VARIABLE ApplyHisteresis_P4 :

VALUES : {NoHyst, Above, Below}

PARENT : NONE

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.3. ACTIVITIES 81

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF

TABLE

DEFINED(Altitude_P4)

WHEN(Altitude_P4 < Threshold_P4, False)

END TABLE

: T ;

: T ;

TRANSITION NoHyst TO Below IF

TABLE

DEFINED(AltiZude_P4)

WHEN(Altitude_P4 > Threshold_P4, False)

END TABLE

: T ;

: T ;

TRANSITION Above TO NoHyst IF

TABLE

DEFINED(Altitude_P4) : T T ;

WHEN(Altitude_P4 < Threshold_P4 + AboveHysteresis_P4, False) : T * ;

WHEN(Altitude_P4 > Threshold_P4 - BelowHysteresis_P4, False) : * T ;

END TABLE

TRANSITION Below TO NoHyst IF

TABLE

DEFINED(Altitude_P4) : T T ;

WHEN(Altitude_P4 > Threshold_P4 + AboveHysteresis_P4, False) : T * ;

WHEN(Altitude_P4 < Threshold_P4 - BelowHysteresis_P4, False) : * T ;

END TABLE

END STATE_VARIABLE

10.3.3 Using Tools to Visualize the Preliminary Behavoral Spec-

ification

This section describes how using a formal language that is supported by tools can help in

visualizing the requirements at this stage. Many forma languages are supported by tools,

including RSML -_, which is supported by the NIMBUS tools. The examples given in this
section are from the NIMBUS toolset; however, almost any reasonable good formal language

tools will provide this information.

Viewing the System Dependency Graph One of the artifacts of this stage in the

processs is the system dependency graph. For a simple specification, it may be easy enough

to generate this by hand. For a more complex specification doing it by hand will be much

more complex.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

82 CHAPTER10. DRAFT REQUIREMENTS

In practice,it iseasierto thinkaboutstagesorblocksofthecomputationfor acomplex
specification.Nevertheless,adetailedvisualizationof theactualdependencygroupthat is
generatedby toolscanbeveryuseful.

Simulating the Draft Specification Simulating the draft specification allows the an-

alyst, customers, and others involved (managers, regulatory agencies, researchers, etc.) to

see what the specified behavior of the system is and make corrections early in the process.

Thus, simulation is an invaluable tool for validating the specification and is especially

useful if it can be done early and continuously throughout the effort.

Many languages support tools which allow the user to input data into the input variables

and see what values the outputs take on. More advanced toolsets, like NIMBUS allow the

user to connect the draft requirements to more advanced models and simulations of the

enviromnent. For example, in a avionics context, the draft specification could be connected

to a cockpit simulator and tested with actual pilots. In a medical devices context, the draft

requirements might be connected to an accurrate simulation of the body or be run through

actual patient data. By accurately simulating the environment and input sequences to the

draft specification, you can achieve a nmch higher quality product than just making up

the inputs yourself (from your own mental model of the environment).

10.4 Evaluation Criteria

To evaluate the entities produced in this phase, you should ask the h)llowing questions:

• Does each variable used in the system have a complete definition?

• Are there any monitored variables which are not used to compute the value of any

controlled quantity? If so, can they be eliminated?

• Are there any controlled quantities which are never produced as a result a of a change

in the monitored quantities? If so, can they be eliminated?

• Are there any cycles in tile system dependency graph? If so, they should be elimi-
nated.

• There should be no imports which are not used in the computation of the exports.

In addition, there should be no exports which are never generated.

• All imports for all modules have been given a value in the enclosing scope.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

10.5. EXIT CRITERIA 83

10.5 Exit Criteria

You have completed a good draft specification when you have the following:

• Complete definitions of all monitored, controlled, and state variables

• View of the variable dependency graph

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

84 CHAPTERi0. DRAFT REQUIREMENTS

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 11

Phase 5: Detailed Requirements

Specification

In this chapter, the draft requirements specification is updated to include information about

fault tolerance and error conditions which was intentially left out of earlier drafts. By the

end of this phase, a complete specification of the REQ relation, the system requirements,

will be produced.

11.1 Goals

The goal of this chapter is to complete the specification of REQ so that it includes all

necessary information. In addition, we will prepare the REQ relation for the realities of

sensor failures, etc. by adding in failure modes.

• Specify startup and shutdown behavor

• Specify the tolerances of each controlled and monitored variable

• Identify possible error conditions and specify the error handling behavior

• Specify degraded modes of functionality in response to tolerance violations or error
conditions

11.2 Entrance Criteria

Before starting this phase, you should have the following:

• The structured draft of REQ from the previous phases

• A rough idea of what types of sensors and actuators might be used in the system.

85

86 CHAPTER11. DETAILEDREQUIREMENTS

11.3 Activities

The activities of this section help you to focus on the special cases of the specification.

These are areas of the systems operation which are do not represent the normal operating

modes of the system, but rather the boundary cases and error conditions that the system
must handle.

Given that the activities in this section are very important, the reader may question

why it is that we are just getting around to them now. We do them at this stage in the

methodology because it is easier to deal with these cases after one developes a thourough

understanding of the system. We do not focus on them at the begining because it is ea_sy

to become bogged down in special cases before developing an understanding about the

essence of what it is the system is supposed to do.

11.3.1 Specify Initialization and Shutdown Activities

Most controllers have (or should have!) a different operational profile immediately after

they are turned on and just before they are about to turn off. The reason for this is that the

environment in which the controller operates is a system of its own right (and is described

by the NAT relation); it exists with or without the presence or operation of the controller.

Certainly, there are two different systems: one with the controller turned on and one with
the controller turned off. And, these systems behave differently from one another.

The startup and shutdown modes of a system are designed to handle tile fact that is

necessary to transition from the system were the controller is off to the system where it is

on and vice-versa. In particular, for tile startup mode, it is necessary to ensure that the
model of the environment within the controller matches the real environment and for the

shutdown mode it is necessary to ensure that once the controller goes offline the system

will be in a safe state (and will remain in a safe state in the absense of the controller's

actions).
Consider the accident in which a chemical plan explosion was caused by a system which

was designed to use a metering pump to put a certain amount of catalyst into a reaction.

The control system had begun this operation and then was taken offline. While the system

was oitiine, the pump continued to run. However, when the control system was turned

on again, it started counting from where it had left off, not taking into consideration the

amount which had been pumped while it was offline. This is an example of improper

startup and shutdown behavior for the system.

The ASW's startup mode is very simple: it just has to receive five seconds of valid

altitude in order to transfer to normal operation. Thus, it can be represented with only

a single transition and does not need other behavior. In other systems, the controller

may need to wait until it develops a certain confidence in the estimates of the monitored

quantities before it issues any commands to the environment.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

11.3. ACTIVITIES 87

11.3.2 Specify Error Handling

The first thing to do in specifying the error handling behavior of the specification is to

create a list of potential error conditions in the specification. Note that all of the possible

error conditions may not be known at this time; some error conditions may only come

to light when we add information about the sensors and actuators. Nevertheless, we will

know about many possible error conditions during our development of the REQ relation

and we should attempt to handle those error conditions in the best way possible.

It is often useful to have a global failure mode that encapsulates the failure behavior

for the system. The ASW's failure mode is given in the example below.

EXPORT CON_Failure_P5 :

PARENT : NONE

DEFAULT_VALUE : False

TRANSITION False TO True IF

TABLE

ASW_System_Mode_P5 = Normal0perating : T * ;

ASW_0perating_Mode_P5.CON_FailureP5 : T * ;

ASW_System_Mode_P5 = Degraded • * T ;

ASW_0perating_Mode_P5.C0N_Failure_P5 : * T ;

END TABLE

TRANSITION True TO False IF ASW_System_Mode_P5 = Reset

END EXPORT

Tile ASW is a faily simple example. In more complex systems, it is useful to have each

module below the main module also export a failure indication that covers failures local to

that module. Then, the global failure mode checks each of these local failure indications

and, if they are true, may decide declare a failure or to enter some reduced functionality
mode as is discussed in the next section.

11.3.3 Degraded Modes of Functionality

Often, we wish to have a system which has some behavior under ideal conditions, i.e.,

good knowledge about the environment, but which will continue to flmction in a safe

manner event if conditions are not ideal (for example, with broken sensors or actuators).

If we know that the desired controller has these properties, then we can plan ahead and

establish several different modes of functionality ranging from fully operational where all

information is known to an acceptable confidence to a shutting down mode where the

system will turn itself off and leave the process in a safe state.

This sort of system is difficult to construct because, in a sense, many different systems

are being specified - one for each degrated functionality mode. However, it may be that

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

88 CHAPTER11. DETAILEDREQUIREMENTS

the systembehavioris moreor lessthe samein thesevariousmodes.In that case,the
modesmaybeableto be treatedasa family.

Thevariousmodesof the ASWandhowtheASWswitchesbetweenthemareshown
below. Wehavesimplyaddedadditionalstatesto the undevelopedASW_System_Mode
from the previousphase. We haveaddedan overallfailuremodeto dealwith system
failuresandalsoa valuefor thestartedanddegradedfunctionalitymodes.

STATE_VARIABLE ASW_System_Mode_P5 :

VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}

PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION NormalOperating TO Reset IF MON_Reset_P5

TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION Normal0perating T0 Degraded IF

EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded T0 Normal0perating IF

DURATION (MON_Altitude_Quality_P5 = Valid, 0 S, Clock) > I M

TRANSITION Reset TO NormalOperating IF

DURATION(PRE(ASW_System_Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

In order to enter the degraded functionality mode, we must know whether two episodes

of invalid altitude lasting at least one second have occured within one minute of each

other. This requires state information, so we have introduced the EpisodeMonitor_P5

variable to track the occurence of episodes and inform the ASW_System_Mode variable

when a qualifying episode as occured and it is necessary to enter degraded functionality

mode.

STATE_VARIABLE EpisodeMonitor_P5 :

VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}

PARENT : NONE

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

11.3. ACTIVITIES 89

Purpose : _*L This simple state variable tracks whether or not

we have met the conditions for being in degraded functionality

mode. Namely, whether or not we have seen two periods of

invalid altitude lasting 1 second or more within I minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF

DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) > 1S

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE

DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) > I S : T ;

DURATION(PRE(EpisodeMonitor_P5) = FirstEpisode) > i S : T ;

END TRANSITION

TRANSITION FirstEpisode TO NoEpisode IF

DUKATION(PRE(EpisodeMonitor_P5) = FirstEpisode) >= i M

TRANSITION OualifyingEpisode T0 NoEpisode IF

DURATION(MON_Altitude_0uality_P5 = Valid, 0 S, Clock) >= 2 M

END STATE_VARIABLE

11.3.4 Specify Tolerances and Handle Violations

In the ideal world of the REQ specification, we know the value of each controlled variable

with exact precision. Nevertheless, we know that eventually we will build a physical im-

plementation of the system and that in that implementation we cannot know the values

for certain or to an infinite accuracy.

In many cases, the tolerance of a controlled variable is constant throughout the entire

specification. In that case, tile tolerance may be specified in much the same way as the

precision was specified for monitored variables.

In other cases, the tolerance of a controlled variable may be a function of one or more

modes of the system. For example, some cases when tolerance may be a function include

• When particular variables in the specification increase in value, for example, the

altitude of an aircraft may be required to be controlled to a much greater tolerance

when the aircraft is near to the ground than when the aircraft is at a high altitude;

• When the system has several degrated modes of functionality, the controlled variables

may be specified to a wider tolerance in a mode of decreased functionality; and,

• When the system has a high load the controlled variables may have a wider tolerance,

for example, in the case of a tracking system if the system is tracking 30 aircraft it

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

90 CHAPTER11. DETAILED REQUIREMENTS

may track each one to a certain tolerance; however, if the system had only 5 aircraft

to track it may be able to track each one to a greater level of accuracy.

11.4 Evaluation Criteria

The specification of REQ is complete when the following are true:

• All errors for the system should have a specified behavior or an explaination of why

the system does not need to handle that error differently from the normal case.

• All variables specified in the system should be complete and consistent

11.5 Exit Criteria

You are done when the specification of REQ meets the criteria expressed above.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Chapter 12

Phase 6: Including Sensors and
Actuators

This chapter describes how to take a specification of the REQ relation and refine that

specification into a specification of the SOFT relation.

12.1 Goals

The goal of chapter is to produce the finished specification of the SOFT relation. In a

sense, the activities done in this phase are a microcosm of the activities done in earlier

phases as you first describe the IN and OUT relations at a high level and then begin to

specify the IN -1 and OUT -1 relations.

12.2 Entrance Criteria

• The complete specification of REQ

• A list of all the sensors and actuators which will be or could be used in the system.

• A description of the properties of each sensor and actuator.

12.3 Activities

The activities of this phase are essentially just a replication of tile previous phases, except

for the IN -1 and OUT -l relations as opposed to the REQ relation. Thus, we will begin by

identifying tile sensors and actuators in the system from the commonalities and variabilities
in phase one. Then we will identify the input and output variables as we did in phase two.

91

92 CHAPTER12. SENSORSAND ACTUATORS

Wewill thenmoveon to theoverallstructureof theIN-1 andOUT-1 relationsjust asin
phasethree,andconstructa draft of therelationsasin phasefour. Finally wewill add
all thenecessaryerrorhandlingandpolishingasin phasefive. At that pointwewill have
completelyspecifiedthe SOFTrelation.

12.3.1 Identify and Describe the Sensors and Actuators

The first step in adding the IN -1 and OUT -1 relations is to identify and describe the

sensors and actuators involved in the system. After that, you identify the input and

output variables for the software. This activity is analogous to phase two for the REQ
relation.

For the ASW, each aircraft as a number of altimeters that measure the altitude, a

status indication from the DOI, a reset signal, and an inhibit signal. All inputs except for

the altimeters pretty much map directly to the existing monitored variables. Therefore, on

the input side we will concentrate in refining the IN -1 relation for the Altitude monitored

quantity.
The commonality anaylsis from phase one tells us that we will have a varying number

and type of altimeters for each aircraft that we wish to build. Furthermore, we know that

the different types of altimeters yield different information: analog altimeters give only

above or below whereas digital altimeters yield a numeric altitude.

On the output side, we have the DOI command indication and the failure output. Only

the failure output needs significant changes to specify the output relation.

For the failure indication, the ASW must produce a pulse on a watchdog timer at least

every 200 MS or else the other devices on board the aircraft will believe that the ASW

has failed. This is the opposite from the way that the REQ relation works, where we only

produce an indication if there was a failure. Thus, we need a small state machine that will

produce a pulse if there is not a failure.

12.3.2 Outline the IN -1 and OUT -1 Relations

The first step in specify inteh IN -1 and OUT -1 relations is to outline the computation,

just like we did for REQ in phase. For the ASW, the IN -1 relation is the most interesting,
so we will focus on that one.

Each aircraft differs in the number and type of altimeters and in the algorithm used to
deternfine whether the aircraft is above or below the threshold from the various altimeters.

The first thing to notice is that the specification of REQ from phase five expects a numeric

altitude input. For compatability, we will change the input to REQ to be a thresholded
value and move the thresholding of the digital altimeters into the IN -1 relation.

Thus, the overall structure of the IN -1 relatin for Altitude is given by the following

module definition:

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

12.3. ACTIVITIES 93

MODULE Altimeters_IN_P6 :

INTERFACE :

IMPORT CONSTANT NumDigitalAlt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : i0

END IMPORT

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : iO

END IMPORT

IMPORT DigialAlt_P6 :

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

[1 TO NumDigitalAlt] 0F INTEGER

IMPORT CONSTANT Threshold_P6 : INTEGER

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT AnalogAlt_P6 : [1 TO NumAnalogAlt] 0F AboveBelowType

END IMPORT

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

94 CHAPTER12. SENSORSANDACTUATORS

IMPORT DigitalQuality_P6 : [I TO NumDigitalAlt] OF AltitudeQualityType

END IMPORT

IMPORT AnalogOuality_P6 : [1 TO NumAnalogAlt] OF AltitudeQualityType

END IMPORT

IMPORT INTERFACE Alti%udeVoter_P6 :

END IMPORT

EXPORT Altitude_P6 : AboveBelowType

END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType

END EXPORT

END INTERFACE

DEFINITION :

END DEFINITION

END MODULE

The interface AltitudeVoter will be used by all the various implementations of the alti-

tude voting algorithm. The specification for each aircraft will decide how many altimeters

and which algorithm to use.

12.3.3 Specify the Normal-Case

For tile next activity, we need to fill in the actual behavior of the IN -1 and OUT -1 modules

that we have declared. The Definition part of the Altitude module is shown below (for

brevity, we will not duplicate the interface specificatoin).

DEFINITION :

MODULE_INSTANCE ThresholdedDigital_P6 : [i TO NumDigitalAlt] OF ThresholdedAltitude_P6

PARENT : NONE

ASSIGNMENT

Altitude_P6 := DigitalAlt_P6,

Threshold_P6 := EXTEND Threshold_P6 TO [i T0 NumDigitalAlt] OF INTEGER,

AboveHysteresis_P6 := EXTEND GoAboveHyst_P6 TO [i T0 NumDigitalAlt] 0F INTEGER,

BelowHysteresis_P6 := EXTEND GoBelowHyst_P6 TO [1 TO NumDigitalAlt] OF INTEGER

END ASSIGNMENT

END MODULE_INSTANCE

SLOT_INSTANCE AltitudeVoZer_P6 :

ASSIGNMENT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

12.4. EVALUATIONCRITERIA 95

Num_of_Alt := NumDigitalAlt_P6 + NumAnalogAlt_P6,

Altitudes := ThresholdedDigital_P6.Result_P6 I AnalogAlt_P6,

Qualities := DigitialQuality_P6 i AnalogQuality_P6

END ASSIGNMENT

END SLOT_INSTANCE

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoter_P6.Altitude_P6

EQUALS AltitudeVoter_P6.Altitude_P6

END EXPORT

EXPORT AltitudeQuality_P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoZer_P6.AltitudeQuality_P6

EQUALS AltitudeVoter_P6.AltitudeQuality_P6

END EXPORT

END DEFINITION

We also need to specify the various altitude voting algorithms. These can be found in

Appendix F. We will not duplicate them here.

At this point, it is possible to sinmlate the entire SOFT relation by wiring the IN -1

OUT -1 and REQ relations together.

12.3.4 Specify Detailed SOFT Relation

With the preliminary version of the IN -1 and OUT -1 relations completed, it is possible to
move on and consider the startup, shutdown, and degraded functionality modes of the IN -1

and OUT-1 relations. For tile ASW, there is not much here. But, you would construct the

detalied version of these relations in the same way as for phase five of the REQ relation.

All the analyses that were done on the REQ relation are also applicable to the IN -1

and OUT -1 relations. They should be consistent and (ideally) complete just as the REQ

relation was refined to be. In addition, analysis to deterine the timing properties of the

SOFT relation, and the deviation of the output under noisy data should be performed.

At the end of this activity, you should have a complete specification of the SOFT
relation.

12.4 Evaluation Criteria

• Are assumptions (tolerance, frequency, etc.) placed on the input variables compatible
with the assumptions formed for the monitored variables in the previous phase?

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

96 CHAPTER12. SENSORSAND ACTUATORS

Haseachadditionalerrorconditionthatwasrecognizedbeensuppliedwithaspecified
behavior?

Haveall knownerrorconditionsof thesensorsandactuatorsbeenaccountedfor?

12.5 Exit Criteria

The specification is complete when you can answer "yes" to all of the above questions.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix A

The Altitude Switch in RSML -e-

Phase 1

This chapter describes the running example for the FORMpcs methodology, the Altitude

Switch (ASW) family. One chapter in the appendix is devoted to the complete ASW fam-

ily specification as it exists at the end of each phase in the idealized FORMpcs process.

Of course, in constructing these idealized versions, we may have iterated between several

phases. It would be confusing to attempt to provide all of that information here. Never-

theless, where this iteration took place and was significant in nature, we have attempted

to explain it in these examples.

A.1 Commonalities and Variabilities for the ASW

The ASW family consists of systems on board the aircraft that utilize the values from the
various altimeters on board to make a choice among various options for actions (one of

which being to do nothing) and perform the choosen action. Therefore, some high-level

commonalities and variabilities are the following:

C1 All ASW systems will have a way to measure the altitude of the aircraft

C1.1 Ttle ASW system will use the information about the aircraft's altitude to make

a decision as to what action the ASW should perform

V1 The actions that the ASW takes in response to the altitude and the criteria to perform
those actions varies from aircraft to aircraft

At this point, the ASW is essentially a family of systems that process the altitude and

then can perform some action based on the altitude that is measured. Of course, the ASW

97

98 APPENDIXA. THE ASWIN RSML-E- PHASE1

existsonboardandaircraft,of somekind and that aircraftwill havea specifiednumber
andtypeof altimeters.This is notedin the followingtwovariabilities.

V2 Thenumberandtype of Altimeters,devicesthat measurealtitude,on boardeach
aircraftmayvary.

V2.1 Somealtimetersprovidea numericmeasureof thealtitude (digitalaltimeters)
whereassomealtimeterssimplyindicatewhetheror not the altitudeis above
or belowa constantthresholdwhichis determinedwhenthealtimeteris man-
ufactured(analogaltimeters).

Differentmanufactersand/ordifferentsituationsmaydictateusingdifferentalgorithms
to processandthresholdthealtitude. This isnotedin thefollowingvariabilities.

V3 In familymemberswherethereis morethanonealtimeter,a varietyof smoothing
and/or thresholdingalgorithmsmaybe usedto determinethe estimatedvaluefor
thetruealtitudeor estimatedvalueof whetheror not theaircraftis truelyaboveor
beh)wa certainthreshold.

V3.1 Methodsfor choosingnumericaltitudefrom severalnumericsourceswill be
mean,median,smallest,largest

V3.2 Methodsfor choosingwhetheror not the aircraft is aboveor belowa certain
thresholdfrom a varietyof altimeterswhichareeitherthresholdedor numeric
areanyoneabove/below,all above/below,andmajorityabove/below.

All thealtimetersthat areusedonboardtheaircraftarerequiredto provideameasure
of thevalidityof themeasure.Futhermore,if theASWcannotgeta valid(orhighenough
precision)estimationof thealtitude,it shoulddeclarethat thesystemhasfailed.Therefore,
wewouldliketo recordthat factasa commonalityfor theASWfamily.

C2 All Altimeterswill providean indicationof whetheror not thesuppliedaltitudeis
validor not

C2.1An altitudewhichis denotedto be invalid shall not be used in a compuation

to determine the action to be performed by the ASW

C2.2 If no altitude can be determined (i.e., all altimeters report invalide altitudes) for

a specified period of time, then the ASW will declare that the system has failed.

This period of time shall be constant for each family member (i.e., determined

at specification time).

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

A.1. COMMONALITIESAND VARIABILITIESFORTHE ASW 99

V4 Theperiodof time that the altitudemustbeinvalidbeforethe ASWwill declarea
failuremayvarybetween2 secondsand 10secondsfrom familymemberto family
member.

In orderfor otherdevicesonboardtheaircraft to knowthat the ASWhasfailed,the
ASW mustprovidesomekind of failureindication. Usually,this is doneby havingthe
systemin questionceaseto strobea watchdogoutput. If the watchdogis not present,
then otherdeviceson boardthe aircraft knowthat that pieceof the systemis no long
functioningfor somereason.

C3 All ASWsystemswill providea failureindicationto the environment.

C3.1Theindicationthat theASWhasfailedwill bethefact that theASWhasnot
strobeda watchdogtimer within a specifiedamountof time. This periodof
time shallbe a constantfor eachfamily member(i.e., knownat specification
time).

V5 Thetimeintervalwith whichtheASWmuststrobethewatchdogtimer variesfrom
aircraft to aircraft.

TheASWalsoacceptsan inhibit anda resetsignal.Theinhibit signalshouldprevent
the ASW from performingany actionother than declaringa failure. The resetsignal
shouldreturn theASWto its initial state.

C4 TheASWshallexceptan inhibit signal.Whileinhibited,theASWshallnotattempt
to performanyactionotherthandeclaringa failure.

C5 TheASWshallexcepta resetsignal. Whenthe resetsignalis recieved,theASW
shallreturn to its initial state.

Finally,theASWhasseveraloperatingmodesin additionto thenormalonedescribed
above.The ASWshouldwait until receivingat least5 secondsof valid altitude before
performinganyaction.

C6 TheASWshallreceiveat lea.st5secondsofvalidaltitudeuponstartupbeforeentering
normaloperation.

In addition, the ASWhasa reducedfunctionalitymodethat is activatedwhentwo
episodesof invalidaltitudelastingat leastonesecondoccurwithin a minuteof eachother.
In thereducedfimctionalitymode,if theASWdetectsthat anactionshouldbeperformed,
it shallwait fora minumumof 2secondsbeforecheckingtheconditionsfor actionagain.If,
afterthat minumumdelay,theconditionsfor actionarestill statisfied,thenit will perform
theaction.However,if afterthesixsecondstheconditionsarenot satisfiedthentheASW
will disgardthat actionandgobackto waitingfor the aircraft to crossthe threshold.

Draft producedonSeptember29,2002 UNIVERSITYOFMINNESOTA

100 APPENDIXA. THE ASWIN RSML-E- PHASE1

C7 TheASWshallenterreducedfunctionalitymodewhentwoepisodesofinvalidaltitude
lastingat leastonesecondoccurwithin oneminuteof eachother

C7.1Whilein reducedfunctionalitymode,theASWwill delayperforminganyaction
byaminumumdelayperiod(2seconds)at whichtimeif theconditionsforaction
arestill satisfiedtheASWwill performtheaction

C7.2While in reducedfunctionalitymode,the ASW will not wait to peforman
actionlongerthanthemaximumdelaytime(6seconds).

C7.3TheASWshallexit thereduceflmctionalitymodeuponreceiptof oneminute
of valid altitudedata

Asdefined,theASWsystemcurrentlyallowsfor almostanyactionto beperformedas
aresultof theestimatedaltitude.A subfamilyofthebroadASWfamlywouldbetheclass
of ASWdevicesresponsiblefor turningonor off a particularDeviceof Interest(DOI) on
boardtheaircraft.

CDOI1 The ASW shall change tile status (turn on or off) a Device of Interest (DOI) when
it crosses a certain threshold

VDOI1 The threshold for the ASW varies from 0 to 8024 feet flom aircraft to aircraft

VDOI 2 Whether tile ASW turns on/off the DOI when passing above/below the threshold

is a variability with nine possible choices:

• do nothing going above or below;

• turn on going below, do nothing going above;

• turn off going below, do nothing going above;

• do nothing going below, turn on going above;

• turn on going below, turn on going above;

• turn off going below, turn on going above;

• do nothing going below, turn off going above;

• turn on going below, turn off going above; or,

• turn off going below, turn off going above;

To deal with noisy data, or the aircraft flying near to the threshold altitude, the DOI

controlling ASW needs to have a certain hysteresis factor that is used to deterimine how

much the altitude of the plane must change in order to have the DOI powered on or off

again. The commonalities and variabilities that govern the hysteresis function of the ASW

are given below.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

A.2. STRUCTUREAND MEMBERSOF THE ASWFAMILY 101

CDOI2 The ASW shall employ a hystersis factor to ensure that when the aircraft is flying

at approximately the threshold altitude noisy data from the altimeters or slight vari-

ations in altitude do not cause the ASW to turn on/off the DOI in rapid succession

VDOI3 Tile hysteresis factor may vary from aircraft to aircraft between 50 ft and 500 ft.

VDOI4 The hysteresis factor may vary depending whether or not the aircraft is going above
or below the threshold.

CDOI3 Both the hysteresis factor for going above and the hysteresis factor for going below

shall be a constant for each particular aircraft (i.e., known at specification time).

Finally, the ASW "will received updates from the DOI whenever that status of the

DOI changes. This is important to confirm whether or not the DOI is responding to

the commands issued by the ASW as well as fofill the requirement denoted by the final

commonality.

CDOI4 The DOI shall give the ASW an indication of its status (on or off) whenever that

status changes

CDOI5 Whenever the ASW submits a command to the DOI, it shall wait for a specified

period of time for the status of the DOI to change to reflect the command. If the

status does not change within the specified period of time, then the ASW shall declare

a failure. The period of time will be a constant for each aircraft

VDOI5 The period of time that the ASW will wait after issuing a command to the DOI

before indicating a failure if the DOI does not change status shall vary between 1
second and 5 seconds from aircraft to aircraft.

CDOI6 The ASW shall not attempt to power on the DOI if the DOI is already on or

attempt to power off the DOI if the DOI is already off.

In this section, we have discussed the commonalities and variabilities for the ASW

family. In the next section, we will examine the structure of the ASW family and we will

present the decision model for the ASW family.

A.2 Structure and Members of the ASW Family

As discussed in Chapter 7, the high-level structure of the ASW can be visualized as in

Figures A.1 and A.2.

The next section presents the decision model for the ASW.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

102 APPENDIXA. THE ASWIN RSML-E- PHASE1

Majority Above Threshold

Majority Below Threshold

Any One Above Threshold

Any One Below Threshold

All Above Threshold

All Below Threshold

Numeric Least

Numeric Greatest

Numeric Median

Numeric Average

._ ._ ._o _.o_o_ .o_ o _

_ ._,_%,o°',,_"_¢,,_.o_,.o_,

...._---+----+----_-4-4----+--+---_,----!......

....+---+----+----+---+---+----+----+---+----i......

....;,-4----;,----;,---;,---4----;,----;,---+----i......

...._----_----$----e----4-----e----e----e----_-----_......
i i i i i i i i i i

....4""4"'"_-'--4"'"4""4"'"_'"'_-'"4"'"i

....4""4"'";*"'"4""_'"4""'$""4""'4"'-'_
i i i i i i i i i i

.....i.....i....._.....i.....i.....i.....i......i.....i.....i......

.....i....._......i......'_..... '_....._....._......'_..... i.....4......

.....i.....i....._.....i.....i.....i.....i......i.....i....._......

.....i.....i....._.....i.....i.....i.....i......i.....i.....!......

Figure A.I: The ASW family structure visualized in 2 dimensions

ASW AJtitude 1
Algorithm
Dimension

I Nume_ c]Algorithms

Ext_'eme_

Grea4l_t Srpafle_t

f Threshok:leOAlgorithms

1
Median Average _

IVW,ho_ O_mctt_

Figure A.2: The structure of the Altitude Dimension for the ASW

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

A.3. DECISION MODEL FOR THE ASW 103

Variability CS-123 CS-134 DDo123 DD-134 EF-155

of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3

Threshold Algo. Any Any Any Majority Majority

Invalid Alt. Failure 4 s 2 s 2 s 2 s 2 s

Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft

Go Above Action None None None None Turn Off

Go Below Action]'urn On Turn On Turn On Turn On Turn On

Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft

Go Below Hyst. NA NA NA NA 200 ft

DOI timeout 2 s 2 s 2 s 2 s 2 s

Figure A.3: A tabular representation of the ASW family decision model

A.3 Decision Model for the ASW

This section presents the decision model for the ASW family used in the methodology

document. For the purposes of the methodology, we will consider an ASW family with five

members. Figure A.3 shows the tabular decision model for the family.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

104 APPENDIX A. THE ASW IN RSML -E- PHASE 1

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix B

The Altitude Switch in RSML -e-

Phase 2

TYPE_DEF 0n0ffType_P2 { 0n, 0ff }

TYPE_DEF hctionType {NoAction, Turn0n, TurnOff}

MODULE ASW_REO :

INTERFACE :

EXPORT CON_DOI_P2 : {On, Off, Uncommanded}

Purpose : a*L This variable represents the ASW's

commanded status of the Device of Interest (DOI). L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is commanded to be On. The DOI

is commanded to be on when the aircraft enters the target region

for turning the DOI on, the DOI is not already on,

and the ASW is not inhibitied.

\item[Off:] Indicates that the DOI is commanded to be Off. The

DOI is commanded to be off when the aircraft leaves the target

region and after a certain period of time has passed. If this

time is \RUndefined, then the ASW will never turn the DOI Off.

\item[Uncommanded:] Indicates that the DOI is not commanded by the

ASW. This CON_DOI variable will be equal to Uncommanded in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

105

106 APPENDIX B. THE ASW IN RSML -E- PHASE 2

\end{quote}

L*&

Issues : _*L

\begin{myitemize}

\item If the aircraft leaves the target area and the D0I is on,

but was {\em not} commanded to be on by the ASW, should the ASW

turn it off?

\end{myitemize}

L*&

END EXPORT

EXPORT CON_Failure_P2 : Boolean

Purpose : &*L This variable represents the ASW's indication of

whether or not it has failed to the external world. It is

potentially displayed to the pilot and/or used by other subsystems

on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW has failed. The ASW is

considered to be failed if it attempts to turn on the DOI, but the

D0I does not turn on after a certain timeout period.

\item[False:] Indicates that the ASW has not failed. The ASW is

considered to be operating normally if none of the failure

conditions are true.

\end{mydescription}

\end{quote}

L*a

END EXPORT

IMPORT MON_Altitude_P2 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW's idea of what the

altitude of the aircraft is. It is related to the Altitude_Quality

variable. L*&

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

107

Interpretation : &*L

\begin{quote>

\begin{mydescription}

\item[Precision:] We will know the altitude to within $\pm 105 ft.

\end{mydescription}

\end{quote}

L*a

END IMPORT

IMPORT MON_DOI_P2 : 0n0ffType_P2

Purpose : &*L This variable indicates the monitored status of the

DOI. The D0I can be turned on or off by other devices/systems on

board the aircraft, so the ASW needs an accurate accounting of the

status of the D0I L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is currently on.

\item[Off:] Indicates that the DOI is currently off.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Reset_P2 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be

reset or not. In a step where the ASW is reset, this variable will

have the value true. In all others, this variable will have the

value false. L*_

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW as been reset.

\item[False:] Indicates that the ASW has not been reset.

\end{mydescription}

\end{quote}

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

108 APPENDIXB. THE ASWIN RSML-E- PHASE2

L*&

END IMPORT

IMPORT MON_Inhibit_P2 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the

ASW will behave as specified by other requirements.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT CONSTANT Threshold : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family

member when the REQ module is instantiated. It is the altitude

at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : i0 s

Purpose : &*L This constant will be defined by each family

member. It is the length of time after which the ASW will

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

109

declare a failure if there is not valid altitude. L*&

END IMPORT

IMPORT C0NSTANT DOI_Timeout : Time

UNITS : NA

EXPECTED_MIN : I s

EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the D0I does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoBelowAction : ActionType

Purpose : _*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT C0NSTANT GoAboveHyst : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst : INTEGER

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

110 APPENDIX B. THE ASW IN RSML -E- PHASE 2

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

END INTEKFACE

DEFINITION :

END DEFINITION

END MODULE

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix C

The Altitude Switch in RSML -e-

Phase 3

INCLUDE "asw-alltypes.nimbus"

MODULE ASW_KEQ_P3 :

INTERFACE :

EXPORT CON_DOI_P3 : {On, Off, Uncommanded}

Purpose : &*L This variable represents the ASW's

commanded status of the Device of Interest (DOI). L*a

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is commanded to be On. The DOI

is commanded to be on when the aircraft enters the target region

for turning the DOI on, the DOI is not already on,

and the ASW is not inhibitied.

\item[Off:] Indicates that the DOI is commanded to be Off. The

DOI is commanded to be off when the aircraft leaves the target

region and after a certain period of time has passed. If this

time is \RUndefined, then the ASW will never turn the DOI Off.

\item[Uncommanded:] Indicates that the DOI is not commanded by the

ASW. This CON_DOI variable will be equal to Uncommanded in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

\end{quote}

L*&

Issues : &*L

\begin{myitemize}

111

112 APPENDIXC. THE ASWIN RSML-E- PHASE3

\item If the aircraft leaves the target area and the DOI is on,

but was {\em not} commanded to be on by the ASW, should the ASW

turn it off7

\end{myitemize}

L*&

END EXPOKT

EXPOKT CON_Failure_P3 : Boolean

Purpose : &*L This variable represents the ASW's indication of

whether or not it has failed to the external world. It is

potentially displayed to the pilot and/or used by other subsystems

on board the aircraft. L*_

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW has failed. The ASW is

considered to be failed if it attempts to turn on the D01, but the

D0I does not turn on after a certain timeout period.

\item[False:] Indicates that the ASW has not failed. The ASW is

considered to be operating normally if none of the failure

conditions are true.

\end{mydescription}

\end{quote}

L*&

END EXPOKT

IMPORT MON_Altitude_P3 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

CLASSIFICATION: Monitored

Purpose : &*L This variable represents the ASW's idea of what the

altitude of the aircraft is. It is related to the Altitude_Quality

variable. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[Precision:] We will know the altitude to within $\pm 105 ft.

\end{mydescription}

\end{quote}

L*&

END IMPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

113

IMPORT NON_Altitude_Quality_P3 : AltitudeQualityType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the

Altitude of the aircraft is. L*&

END IMPORT

IMPORT MON_DOI_P3 : OnOffType_P3

Purpose : &*L This variable indicates the monitored status of the

DOI. The DOI can be turned on or off by other devices/systems on

board the aircraft, so the ASW needs an accurate accounting of the

status of the DOI L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is currently on.

\item[Off:] Indicates that the DOI is currently off.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Reset_P3 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be

reset or not. In a step where the ASW is reset, this variable will

have the value true. In all others, this variable will have the

value false. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW as been reset.

\item[False:] Indicates that the ASW has not been reset.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Inhibit_P3 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

114 APPENDIXC. THE ASWIN RSML-E- PHASE3

Interpretation : _*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the

ASW will behave as specified by other requirements.

\end{mydescription}

\end{quote}

L*a

END IMPORT

IMPORT CONSTANT Threshold_P3 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family

member when the REQ module is instantiated. It is the altitude

at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P3 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family

member. It is the length of time after which the ASW will

declare a failure if there is not valid altitude. L*_

END IMPORT

IMPORT CONSTANT DOI_Timeout_P3 : Time

UNITS : NA

EXPECTED_MIN : I s

EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the DOI does not respond to a command. L*a

END IMPORT

IMPORT CONSTANT GoAboveAction_P3 : ActionType

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

115

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoBelowAction_P3 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P3 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P3 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

END INTERFACE

DEFINITION :

END DEFINITION

END MODULE

MODULE ThresholdedAltitude_P3 :

INTERFACE :

IMPORT Altitude_P3 : Integer

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

116 APPENDIXC. THE ASWIN RSML-E- PHASE3

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P3 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P3 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P3 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

EXPORT AboveOrBelow : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

END DEFINTION

END MODULE

INCLUDE "standard-modules.nimbus"

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix D

The Altitude Switch in

Phase 4

RSML -e-

INCLUDE "asw-alltypes.nimbus"

MODULE ASW_KEQ_P4 :

INTERFACE :

EXPORT CON_DOI_P4 : DOIControlledType

Purpose : &*L This variable represents the ASW's

commanded status of the Device of Interest (DOI). L*&

Interpretation : _*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is commanded to be On. The DOI

is commanded to be on when the aircraft enters the target region

for turning the DOI on, the DOI is not already on,

and the ASW is not inhibitied.

\item[Off:] Indicates that the DOI is commanded to be Off. The

DOI is commanded to be off when the aircraft leaves the target

region and after a certain period of time has passed. If this

time is \RUndefined, then the ASW will never turn the DOI Off.

\item[Uncommanded:] Indicates that the DOI is not commanded by the

ASW. This CONk_DOI variable will be equal to Uncommanded in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

\end{quote}

L*&

Issues : &*L

\begin{myitemize}

117

118 APPENDIXD. THE ASWIN RSML-E- PHASE4

\item If the aircraft leaves the target area and the DOI is on,

but was {\em not} commanded to be on by the ASW, should the ASW

turn it off?

\end{myitemize}

L*&

END EXPORT

EXPORT CON_Failure_P4 : Boolean

Purpose : &*L This variable represents the ASW's indication of

whether or not it has failed to the external world. It is

potentially displayed to the pilot and/or used by other subsystems

on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW has failed. The ASW is

considered to be failed if it attempts to turn on the DOI, but the

DOI does not turn on after a certain timeout period.

\item[False:] Indicates that the ASW has not failed. The ASW is

considered to be operating normally if none of the failure

conditions are true.

\end{mydescription}

\end{quote}

L*&

END EXPORT

IMPORT MON_Altitude_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW's idea of what the

altitude of the aircraft is. It is related to the Altitude_Quality

variable. L*&

Interpretation : _*L

\begin{quote}

\begin{mydescription}

\item[Precision:] We will know the altitude to within $\pm 105 ft.

\end{mydescription}

\end{quote}

L*&

END IMPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

119

IMPORT MON_Altitude_Quality_P4 : AltitudeQualityType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the

Altitude of the aircraft is. L*&

END IMPORT

IMPORT MON_DOI_P4 : OnOffType_P4

Purpose : &*L This variable indicates the monitored status of the

DOI. The DOI can be turned on or off by other devices/systems on

board the aircraft, so the ASW needs an accurate accounting of the

status of the DOI L*_

Interpretation : _*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is currently on.

\item[Off:] Indicates that the DOI is currently off.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Reset_P4 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be

reset or not. In a step where the ASW is reset, this variable will

have the value true. In all others, this variable will have the

value false. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW as been reset.

\item[False:] Indicates that the ASW has not been reset.

\end{mydescription}

\end{quote}

L*_

END IMPORT

IMPORT MON_Inhibit_P4 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

120 APPENDIXD. THE ASWIN RSML-E- PHASE4

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the

ASW will behave as specified by other requirements.

kend{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT CONSTANT Threshold_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family

member when the KEQ module is instantiated. It is the altitude

at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P4 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family

member. It is the length of time after which the ASW will

declare a failure if there is not valid altitude. L*&

END IMPORT

IMPORT CONSTANT DOI_Timeout_P4 : Time

UNITS : NA

EXPECTED_MIN : I s

EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the DOI does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P4 : ActionType

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

121

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoBelowAction_P4 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

END INTERFACE

DEFINITION :

STATE_VARIABLE ASW_System_Mode_P4 :

VALUES : {Reset, Operating}

PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

122 APPENDIXD. THE ASWIN RSML-E- PHASE4

behavior. L*&

DEFAULT_VALUE : Operating

TRANSITION Operating TO Reset IF

WHEN(MON_Reset_?4, False)

TRANSITION Reset TO Operating IF

DURATION(PRE(ASW_System_Mode_P4), 0 s, Clock) >= 0 S

END STATE_VARIABLE

MODULE_INSTANCE ASW_Operating_Mode_P4 : ASW_Operating_Mode_Def_P4

PARENT : ASW_System_Mode_P4.0perating

ASSIGNMENT

MON_Altitude_P4

MON_Altitude_Quality_P4

MON_DOI_P4

MON_Inhibit_P4

Threshold_P4

Invalid_Alt_Failure_P4

DOI_Timeout_P4

GoAboveAction_P4

GoBelowAction_P4

GoAboveHyst_P4

GoBelowHyst_P4

END ASSIGNMENT

END MODULE_INSTANCE

:= MON_Altitude_P4,

:= MON_Altidue_Quality_P4,

:= MON_DOI_P4,

:= MON_Inhibit_P4,

:= Threshold_P4,

:= Invalid_Alt_Failure_P4,

:= DOI_Timeout_P4,

:= GoAboveAction_P4,

:= GoBelowAction_P4,

:= GoAboveHyst_P4,

:= GoBelowHyst_P4

EXPORT CON_DOI_P4 :

PARENT : ASW_System_Mode_P4.0perating

DEFAULT_VALUE : ASW_Operating_Mode_P4.CON_DOI_P4

EQUALS ASW_Operating_Mode_P4.CON_DOI_P4

END EXPORT

EXPORT CON_Failure_P4 :

PARENT : ASW_System_Mode_P4.0perating

DEFAULT_VALUE : ASW_Operating_Mode_P4.CON_Failure_P4

EQUALS ASW_Operating_Mode_P4.CON_Failure_P4

END EXPORT

END DEFINITION

END MODULE

MODULE ASW_OperatingMode_Def_P4 :

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

123

INTERFACE :

EXPORT CON_DOI_P4 : DOIControlledType

END EXPORT

EXPORT CON_Failure_P4 : Boolean

END EXPORT

IMPORT MON_Altitude_P4 : INTEGER

END IMPORT

IMPORT MON_Altitude_Quality_P4 : AltitudeQualityType

END IMPORT

IMPORT MON_DOI_P4 : OnOffType_P4

END IMPORT

IMPORT MON_Inhibit_P4 : Boolean

END IMPORT

IMPORT CONSTANT Threshold_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_AlZ_Failure_P4 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : I0 s

END IMPORT

IMPORT CONSTANT DOI_Timeout_P4 : Time

UNITS : NA

EXPECTED_MIN : 1 s

EXPECTED_MAX : 5 s

END IMPORT

IMPORT CONSTANT GoAboveAction_P4 : ActionType

END IMPORT

IMPORT CONSTANT GoBelowAction_P4 : ActionType

END IMPORT

IMPORT CONSTANT GoAboveHyst_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

124 APPENDIX D. THE ASW IN RSML -E- PHASE 4

END IMPORT

IMPORT CONSTANT GoBelowHyst_P4 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

END INTERFACE

DEFINITION :

EXPORT CON_DOI_P4 :

PARENT : NONE

DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

TABLE

DOl_Action_Ok(On) : T T ;

WHEN(ThresholdedAltP4.Result_P4 = Below, False) : T * ;

GoBelowAction = TurnOn : T * ;

WHEN(ThresholdedAltP4.Result_P4 = Above, False) : * T ;

GoAboveAction = TurnOn • * T ;

END TABLE

TRANSITION Uncommanded TO Off IF

TABLE

DOI_Action_Ok(Off) : T T ;

WHEN(ThresholdedAlt_P4.Result_P4 = Below, False) : T * ;

GoBelowAction = TurnOff : T * ;

WHEN(ThresholdedAlt_P4.Result_P4 = Above, False) : * T ;

GoAboveAction = TurnOff ' * T ;

END TABLE

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P4 = On, False)

TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P4 = Off, False)

END EXPORT

MACRO DOI_Action_Ok(act IS ActionType)

TABLE

MON_Inhibit_P4 : F F ;

CON_Failure_P4 : F F ;

MON_DOI_P4 = On : T * ;

act = On : F * ;

MON_DOI_P4 = Off : * T ;

act = Off • * F ;

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

125

END TABLE

END MACRO

EXPORT CON_Failure_P4 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS TRUE IF

TABLE

DURATION(AttemptingOn_P4(), 0 S, Clock) > DOI_Timeout_P4

DURATION(AttemptingOff_P4(), 0 S, Clock) > DOI_Timeout_P4

DURATION(MON_Altitude_Quality_P4 = Invalid, 0 S, Clock)

PKE(CON_Failure_P4) = False

END TABLE

:T***;

:*T**;

:**T*;

"***T;

EQUALS FALSE IF

TABLE

DURATION(AttemptingOn_P4(), 0 S, Clock) > DOI_Timeout_P4 : F ;

DURATION(AttemptingOff_P4(), 0 S, Clock) > DOI_Timeout_P4 : F ;

DURATION(MON_Altitude_Quality_P4 = Invalid, 0 S, Clock) : F ;

PKE(CON_Failure_P4) = False : F ;

END TABLE

END EXPORT

MACRO AttemptingOn_P4() :

TABLE

MON_DOI_P4 = Off : T ;

CON_DOI_P4 = On : T ;

END TABLE

END MACRO

MACRO AttemptingOff_P4() :

TABLE

MON_DOI_P4 = On : T ;

CON_DOI_P4 = Off : T ;

END TABLE

END MACRO

MODULE_INSTANCE ThresholdedAlt_P4 : ThresholdedAltitude_P4

PARENT : NONE

ASSIGNMENT

Altitude_P4 := MON_Altitude_P4,

Threshold_P4 := Threshold_P4,

BelowHysteresis_P4 := GoBelowHyst_P4,

AboveHysteresis_P4 := GoAboveHyst_P4

END ASSIGNMENT

END MODULE_INSTANCE

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

126 APPENDIXD. THE ASWIN RSML-E- PHASE4

END DEFINITION

END MODULE

MODULE ThresholdedAltitude_P4 :

INTERFACE :

IMPORT Altitude_P4 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P4 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P4 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P4 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P4 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Result_P4 :

PARENT : NONE

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

127

DEFAULT_VALUE : Above IF

TABLE

DEFINED(Altitude_P4) : T ;

Altitude_P4 > Threshold_P4 : T ;

END TABLE

DEFAULT_VALUE : Below IF

TABLE

DEFINED(Altitude_P4) : T ;

Altitude_P4 <= Threshold_P4 : T ;

END TABLE

DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_P4))

EQUALS Above IF

TABLE

DEFINED(Altitude_F4) : T ;

Altitude_P4 > EffectiveThreshold_P4 : T ;

END TABLE

EQUALS Below IF

TABLE

DEFINED(Altitude_P4) : T ;

Altitude_P4 <= EffectiveThreshold_P4 : T ;

END TABLE

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_P4))

END EXPOKT

STATE_VAKIABLE ApplyHisteresis_P4 :

VALUES : {NoHyst, Above, Below}

PARENT : NONE

DEFAULT_VALUE : NoHyst

TKANSITION NoHyst TO Above IF

TABLE

DEFINED(Altitude_P4) : T ;

WHEN(Altitude_P4 < Threshold_P4, False) : T ;

END TABLE

TRANSITION NoHyst TO Below IF

TABLE

DEFINED(Altitude_P4) : T ;

WHEN(Altitude_P4 > Threshold_P4, False) : T ;

END TABLE

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

128 APPENDIXD. THE ASWIN RSML-E- PHASE4

TRANSITION Above TO NoHyst IF

TABLE

DEFINED(Altitude_P4) : T T ;

WHEN(Altitude_P4 < Threshold_P4 + AboveHysteresis_P4, False) : T * ;

WHEN(Altitude_P4 > Threshold_P4 - BelowHysteresis_P4, False) : * T ;

END TABLE

TRANSITION Below TO NoHyst IF

TABLE

DEFINED(Altitude_P4) : T T ;

WHEN(Altitude_P4 > Threshold_P4 + AboveHysteresis_P4, False) : T * ;

WHEN(Altitude_P4 < Threshold_P4 - BelowHysteresis_P4, False) : * T ;

END TABLE

END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold_P4 : INTEGER

PARENT : NONE

UNITS : ft

EXPECTED_MIN : Threshold_P4 - BelowHysteresis_P4

EXPECTED_MAX : Threshold_P4 + AboveHysteresis_P4

DEFAULT_VALUE : Threshold_P4

EQUALS Threshold_P4 + AboveHysteresis_P4

IF ApplyHysteresis_P4 = Above

EQUALS Threshold_P4 - BelowHysteresis_P4

IF ApplyHysteresis_P4 = Below

EQUALS Threshold_P4

IF ApplyHysteresis_P4 = NoHyst

END STATE_VARIABLE

END DEFINITION

END MODULE

II IIINCLUDE standard-modules, nimbus

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix E

The Altitude Switch in RSML -e-

Phase 5

INCLUDE "asw-alltypes. nimbus"

MODULE ASW_REQ_P5 :

INTERFACE :

EXPORT CON_D01_P5 : D01ControlledType

Purpose : &*L This variable represents the ASW's

commanded status of the Device of Interest (DOI). L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[0n:] Indicates that the D0I is commanded to be On. The D0I

is commanded to be on when the aircraft enters the target region

for turning the D01 on, the D01 is not already on,

and the ASW is not inhibitied.

\item[0ff:] Indicates that the DOI is commanded to be Off. The

D0I is commanded to be off when the aircraft leaves the target

region and after a certain period of time has passed. If this

time is \RUndefined, then the ASW will never turn the D0I Off.

\item [Uncommanded:] Indicates that the D0I is not commanded by the

ASW. This CON_DOI variable will be equal to Uncommandsd in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

\end{quote}

L*&

Issues : &*L

\begin{myitemize}

129

130 APPENDIXE. THE ASWIN RSML-E- PHASE5

\item If the aircraft leaves the target area and the DOI is on,

but was {\em not} commanded to be on by the ASW, should the ASW

turn it off?

\end{myitemize}

L*a

END EXPORT

EXPORT CON_Failure_P5 : Boolean

Purpose : &*L This variable represents the ASW's indication of

whether or not it has failed to the external world. It is

potentially displayed to the pilot and/or used by other subsystems

on board the aircraft. L*&

Interpretation : _*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW has failed. The ASW is

considered to be failed if it attempts to turn on the DOI, but the

DOI does not turn on after a certain timeout period.

\item[False:] Indicates that the ASW has not failed. The ASW is

considered to be operating normally if none of the failure

conditions are true.

\end{mydescription}

\end{quote}

L*&

END EXPORT

IMPORT MON_Altitude_P5 :INTEGEK

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW's idea of what the

altitude of the aircraft is. It is related to the Altitude_Quality

variable. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[Precision:] We will know the altitude to within $\pm 105 ft.

\end{mydescription}

\end{quote}

L*&

END IMPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

131

IMPORT MON_Altitude_Quality_P5 : AltitudeQualityType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the

Altitude of the aircraft is. L*&

END IMPORT

IMPORT MON_DOI_P5 : 0n0ffType_P5

Purpose : &*L This variable indicates the monitored status of the

DOI. The D0I can be turned on or off by other devices/systems on

board the aircraft, so the ASW needs an accurate accounting of the

status of the D0I L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is currently on.

\item[Off:] Indicates that the DOI is currently off.

\end{mydescription}

\end{quote}

END IMPORT

IMPORT MON_Reset_P5 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be

reset or not. In a step where the ASW is reset, this variable will

have the value true. In all others, this variable will have the

value false. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW as been reset.

\item[False:] Indicates that the ASW has not been reset.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Inhibit_P5 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

132 APPENDIXE. THE ASWIN RSML-E- PHASE5

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the

ASW will behave as specified by other requirements.

\end{mydescription}

\end{quote}

L*a

END IMPORT

IMPORT CONSTANT Threshold_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family

member when the REQ module is instantiated. It is the altitude

at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P5 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : 10 s

Purpose : &*L This constant will be defined by each family

member. It is the length of time after which the ASW will

declare a failure if there is not valid altitude. L*&

END IMPORT

IMPORT CONSTANT D01_Timeout_P5 : Time

UNITS : NA

EXPECTED_MIN : i s

EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the D0I does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P5 : ActionType

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

133

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is

specified by the decision model for each family member. L*_

END IMPORT

IMPORT CONSTANT GoBelowAction_P5 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

END INTERFACE

DEFINITION :

STATE_VARIABLE ASW_System_Mode_P5 :

VALUES : {Startup, Normal0perating, Degraded, Failed, Reset}

PARENT :NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

134 APPENDIXE. THE ASWIN RSML-E- PHASE5

behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION NormalOperating TO Reset IF MON_Reset_P5

TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalOperating TO Degraded IF

EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF

DURATION (MON_Altitude_Quality_P5 = Valid, 0 S, Clock) > I MIN

TRANSITION Reset TO NormalOperating IF

DURATION(PRE(ASW_System_Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P5 :

VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}

PARENT : NONE

Purpose : &*L This simple state variable tracks whether or not

we have met the conditions for being in degraded functionality

mode. Namely, whether or not we have seen two periods of

invalid altitude lasting i second or more within I minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF

DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) > i S

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE

DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) > I S : T ;

DURATION(PKE(EpisodeMonitor_PS) = FirstEpisode) > i S : T ;

END TABLE

TRANSITION FirstEpisode TO NoEpisode IF

DURATION(PKE(EpisodeMonitor_P5) = FirstEpisode) >= 1MIN

TRANSITION QualifyingEpisode TO NoEpisode IF

DUBATION(MON_Altitude_Quality_P5 = Valid, 0 S, Clock) >= 2 MIN

END STATE_VARIABLE

MODULE_INSTANCE ASW_Operating_Mode_P5 : ASW_Operating_Mode_Def_P5

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

135

PARENT : ASW_System_Mode_P5.Normal0perating

ASSIGNMENT

MON_Altitude_P5 := MON_Altitude_P5,

MON_Altitude_Quality_P5 := MON_Altidue_Quality_PS,

MON_DOI_P5 := MON_DOI_P5,

MON_Inhibit_P5 := HON_Inhibit_P5,

Threshold_P5 := Threshold_P5,

Invalid_Alt_Failure_P5 := Invalid_Alt_Failure_P5,

DOI_Timeout_P5 := DOI_Timeout_P5,

GoAboveAction_P5 := GoAboveAction_P5,

GoBelowAction_P5 := GoBelowAction_P5,

GoAboveHyst_P5 := GoAboveHyst_P5,

GoBelowHyst_P5 := GoBelowHyst_P5,

DOI_Delay_P5 := 0 S

END ASSIGNMENT

END MODULE_INSTANCE

MODULE_INSTANCE ASW_Degraded_Mode_P5 : ASW_0perating_Mode_Def_P5

PARENT : ASW_System_Mode_P5.Degraded

ASSIGNMENT

HON_Altitude_P5 := MON_Altitude_P5,

MON_Altitude_Quality_P5 := MON_Altidue_Quality_PS,

MON_DOI_P5 := MON_DOI_P5,

MON_Inhibit_P5 := MON_Inhibit_P5,

Threshold_P5 := Threshold_P5,

Invalid_Alt_Failure_P5 := Invalid_Alt_Failure_P5,

DOI_Timeout_P5 := DOI_Timeout_P5,

GoAboveAction_P5 := GoAboveAction_P5,

GoBelowAction_P5 := GoBelowAction_P5,

GoAboveHyst_P5 := GoAboveHyst_P5,

GoBelowHyst_P5 := GoBelowHyst_P5,

D01_MinDelay_P5 := 2 S,

DOI_MaxDelay_P5 := 6 S

END ASSIGNMENT

END MODULE_INSTANCE

EXPORT CON_DOI_P5 :

PARENT : NONE

DEFAULT_VALUE : Uncontrolled

EQUALS ASW_0perating_Mode_PS.C0N_D01_P5

IF ASW_System_Mode_P5 = Normal0perating

EQUALS ASW_Degraded_Mode_P5.CON_DOI_P5

IF ASW_System_Mode_P5 = Degraded

EQUALS Uncontrolled IF

TABLE

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

136 APPENDIX E. THE ASW IN RSML -E- PHASE 5

ASW_System_Mode_P5 = Failed : T * ;

ASW_System_Mode_P5 = Reset : * T ;

END TABLE

END EXPORT

EXPORT CON_Failure_P5 :

PARENT : NONE

DEFAULT_VALUE : False

TRANSITION False TO True IF

TABLE

ASW_System_Mode_P5 = Normal0perating : T * ;

ASW_0perating_Mode_P5.CON_Failure_P5 : T * ;

ASW_System_Mode_P5 = Degraded • * T ;

ASW_0perating_Mode_P5.C0N_Failure_P5 : * T ;

END TABLE

TRANSITION True TO False IF ASW_System_Mode_P5 = Reset

END EXPORT

END DEFINITION

END MODULE

MODULE ASW_0peratingMode_Def_P5 :

INTERFACE :

EXPORT CON_DOI_P5 : DOIControlledType

END EXPORT

EXPORT C0N_Failure_P5 : Boolean

END EXPORT

IMPORT MON_Altitude_P5 : INTEGER

END IMPORT

IMPORT MON_Altitude_Quality_P5 : AltitudeQualityType

END IMPORT

IMPORT MON_DOI_P5 : 0n0ffType_P5

END IMPORT

IMPORT MON_Inhibit_P5 : Boolean

END IMPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

137

IMPORT CONSTANT Threshold_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P5 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : I0 s

END IMPORT

IMPORT CONSTANT DOl_Timeout_P5 : Time

UNITS : NA

EXPECTED_MIN : 1 s

EXPECTED_MAX : 8 s

END IMPORT

IMPORT CONSTANT GoAboveAction_P5 : ActionType

END IMPORT

IMPORT CONSTANT GoBelowAction_P5 : ActionType

END IMPORT

IMPORT CONSTANT GoAboveHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT GoBelowHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT D01_MinDelay_P5 : TIME

Purpose : &*L This parameter to the ASW operating module

determines whether or not we will wait to turn the D0I on. If it

is greater than zero, then we will wait. It represents the

minium waiting time L*&

END IMPORT

IMPORT DOl_MaxDelay_P5 : TIME

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

138 APPENDIXE. THE ASWIN RSML-E- PHASE5

Purpose : a*L This parameter to the ASW operating module

determines the maximum waiting time that we will stay in a

Delayed action state before giving up and returning to NoAcZion

L*&

END IMPORT

END INTERFACE

DEFINITION :

EXPORT CON_DOI_P5 :

PARENT : NONE

DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

TABLE

GoBelowAction = Turn0n : T * ;

ActionBelow_P5.PerformAction_P5 : T * ;

GoAboveAction = Turn0n • * T ;

ActionAbove_P5.PerformAction_P5 : * T ;

END TABLE

TRANSITION Uncommanded TO Off IF

TABLE

GoBelowAction = Turn0ff

ActionBelow_P5.PerformAction_P5

GoAboveAction = TurnOff

ActionAbove_P5.PerformAction_P5

END TABLE

T* ;

T* ;

*T;

*T ;

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P5 = On, False)

TRANSITION 0ff TO Uncommanded IF WHEN(MON_D01_P5 = Off, False)

END EXPORT

MODULE_INSTANCE ActionBelow_P5 : DOI_Action_P5

PARENT : NONE

ASSIGNMENT

Direction_P5 := Down,

ThresholdedAltitude_P5 := ThresholdedAlt_P5.Result_P5,

MinDelay_P5

MaxDelay_P5

AltitudeQuality_P5

ActionOK_P5

Clock

END ASSIGNMENT

:= DOI_MinDelay_P5,

:= DOI_MaxDelay_P5,

:= MON_AlitudeQuality_P5,

:= DOI_Action_0k_P5(),

:= Clock

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

139

END MODULE_INSTANCE

MODULE_INSTANCE ActionAbove_P5 : DOl_Action_P5

PARENT : NONE

ASSIGNMENT

Direction_P5 := Up,

ThresholdedAltitude_P5 := ThresholdedAlt_PS.Result_P5,

MinDelay_P5

MaxDelay_P5

AltitudeQuality_P5

ActionOK_P5

Clock

END ASSIGNMENT

END MODULE_INSTANCE

:= DOl_MinDelay_P5,

:= DOl_MaxDelay_P5,

:= MON_AlitudeQuality_P5,

:= DOI_Action_Ok_P5(),

:= Clock

MACRO DOl_Action_Ok_P5(act IS ActionType)

TABLE

MON_Inhibit_P5 : F F ;

CON_Failure_P5 : F F ;

MON_DOI_P5 = On : T * ;

act = On : F * ;

MON_DOI_P5 = Off : * T ;

act = Off • * F ;

END TABLE

END MACRO

EXPORT CON_Failure_P5 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS TRUE IF

TABLE

DURATlON(AttempZingOn(), 0 S, Clock) > DOl_Timeout_P5

DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P5

DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock)

PRE(CON_Failure_PS) = False

END TABLE

:T***;

:*T**;

:**T*;

"***T;

EQUALS FALSE IF

TABLE

DURATlON(AttemptingOn(), 0 S, Clock) > DOl_Timeout_P5 : F ;

DURATlON(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P5 : F ;

DURATION(MON_Altitude_Quality_P5 = Invalid, 0 S, Clock) : F ;

PRE(CON_Failure_P5) = False : F ;

END TABLE

END EXPORT

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

140 APPENDIXE. THE ASWIN RSML-E- PHASE5

MACRO Attempting0n() :

TABLE

MON_DOI_P5 = Off : T ;

CON_DOI_P5 = On : T ;

END TABLE

END MACRO

MACRO AttemptingOff() :

TABLE

MON_DOI_P5 = On

CON_DOI_P5 = Off

END TABLE

END MACRO

: T;

: T ;

MODULE_INSTANCE ThresholdedAlt_P5 : ThresholdedAltitude_P5

PARENT : NONE

ASSIGNMENT

Altitude_P5 := MON_Altitude_P5,

Threshold_P5 := Threshold_P5,

BelowHysteresis_P5 := GoBelowHyst_P5,

AboveHysteresis_P5 := GoBelowHyst_P5

END ASSIGNMENT

END MODULE_INSTANCE

END DEFINITION

END MODULE

MODULE ThresholdedAltitude_P5 :

INTERFACE :

IMPORT Altitude_P5 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P5 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P5 : Integer

UNITS : ft

EXPECTED_MIN : 50

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

141

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P5 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P5 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Result_P5 :

PARENT : NONE

DEFAULT_VALUE : Above IF

TABLE

DEFINED(Altitude_PS) : T ;

Altitude_P5 > Threshold_P5 : T ;

END TABLE

DEFAULT_VALUE : Below IF

TABLE

DEFINED(Altitude_P5) : T ;

Altitude_P5 <= Threshold_P5 : T ;

END TABLE

DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_PS))

EQUALS Above IF

TABLE

DEFINED(Altitude_P5) : T ;

Altitude_P5 > EffectiveThreshold_P5 : T ;

END TABLE

EQUALS Below IF

TABLE

DEFINED(Altitude_PS) : T ;

Altitude_P5 <= EffectiveThreshold_P5 : T ;

END TABLE

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

142 APPENDIXE. THE ASWIN RSML-E- PHASE5

EQUALS UNDEFINED IF N0T (DEFINED(Altitude_P5))

END EXPORT

STATE_VARIABLE ApplyHisteresis_P5 :

VALUES : {NoHyst, Above, Below}

PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst T0 Above IF

TABLE

DEFINED(Altitude_P5) : T ;

WHEN(Altitude_P5 < Threshold_P5, False) : T ;

END TABLE

TRANSITION NoHyst T0 Below IF

TABLE

DEFINED(Altitude_P5) : T ;

WHEN(Altitude_P5 > Threshold_PS, False) : T ;

END TABLE

TRANSITION Above TO NoHyst IF

TABLE

DEFINED(Altitude_P5) : T T ;

WHEN(Altitude_P5 < Threshold_P5 + AboveHysteresis_P5, False) : T * ;

WHEN(Altitude_P5 > Threshold_P5 - BelowHysteresis_P5, False) : * T ;

END TABLE

TRANSITION Below TO NoHyst IF

TABLE

DEFINED(Altitude_P5) : T T ;

WHEN(Altitude_P5 > Threshold_P5 + AboveHysteresis_P5, False) : T * ;

WHEN(Altitude_P5 < Threshold_P5 - BelowHysteresis_P5, False) : * T ;

END TABLE

END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold_P5 : INTEGER

PARENT : NONE

UNITS : ft

EXPECTED_MIN : Threshold_P5 - BelowHysteresis_P5

EXPECTED_MAX : Threshold_P5 + AboveHysteresis_P5

DEFAULT_VALUE : Threshold_P5

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

EQUALS Threshold_P5 + AboveHysteresis_P5

IF ApplyHysteresis_P5 = Above

EQUALS Threshold_P5 - BelowHysteresis_P5

IF ApplyHysteresis_P5 = Below

EQUALS Threshold_P5

IF ApplyHysteresis_P5 _ NoHyst

END STATE_VARIABLE

END DEFINITION

END MODULE

MODULE DOI_Action_P5 :

INTERFACE :

IMPORT MinDelay_P5 : TIME

END IMPORT

IMPORT MaxDelay_P5 : TIME

END IMPORT

IMPORT CONSTANT Direction_P5 : UpDownType

END IMPORT

IMPORT ThresholdedAltitude_P5 : AboveBelowType

END IMPORT

IMPORT AltitudeQuality_P5 : AltitudeQualityType

END IMPORT

IMPORT Action0K_P5 : Boolean

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT PerformAction_P5 : Boolean

END EXPORT

END INTERFACE

DEFINITION :

EXPORT PerformAction_P5 :

143

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

144 APPENDIXE. THE ASWIN RSML-E- PHASE5

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)

END EXPORT

STATE_VARIABLE internal_P5 :

VALUES : {NoAction, Delayed, Perform}

PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction T0 Delayed IF

TABLE

MinDelay_P5 > 0 S : T T ;

Action0K_P5 : T T ;

WHEN(ThresholdedAltitude_P5 = Below) : T * ;

Direction_P5 = Below : T * ;

WHEN(ThresholdedAltitude_P5 = Above) : * T ;

Direction_P5 = Above • * T ;

END TABLE

TRANSITIDN NoAction TO Peform IF

TABLE

MinDelay_P5 > 0 S : F F ;

Action0K_P5 : T T ;

WHEN(ThresholdedAltitude_P5 = Below) : T * ;

Direction_P5 = Down : T * ;

WHEN(ThresholdedAltitude_P5 = Above) : * T ;

Direction_P5 = Up • * T ;

END TABLE

TRANSITION Delayed T0 Perform IF

TABLE

DURATION(PRE(internaI_P5) IN_STATE Delayed, 0 S, Clock) >= MinDelay_P5 : T T ;

Action0K_P5

AltitudeQuality_P5 = Valid

Direction_P5 = Down

ThresholdedAltitude_P5 = Below

Direction_P5 = Up

ThresholdedAltitude_P5 = Above

END TABLE

:TT;

:TT;

:T*;

:T*;

"*T;

'*T;

TRANSITION Delayed TO NoAction IF

DURATION(PRE(inZernaI_P5) IN_STATE Delayed, 0 S, Clock) >= MaxDelay_P5

TRANSITION Perform TO NoAction IF

DURATION(PRE(inZernaI_P5) IN_STATE Perform, 0 S, Clock) >= 0 S

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

145

END STATE_VARIABLE

END DEFINITION

END MODULE

INCLUDE "standard-modules.nimbus"

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

146 APPENDIXE. THE ASWIN RSML-E- PHASE5

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Appendix F

The Altitude

Phase 6

Switch in RSML -s_

/*L

In this chapter, we add to the REQ specification for the ASW a

specification of the ASW's IN' and OUT' relations. These relations

are developed in a similar way to the REQ relation, but starting out

at a high level and then refining the structure and computation,

finally taking into consideration completeness and error handling

constraints.

For this Phase, we will be defining a number of new modules. The

Altimeters_IN_P6 module will transform the inputs from the digital altimeters

L*/

INCLUDE "asw-alltypes.nimbus"

MODULE Altimeters_IN_P6 :

INTERFACE :

IMPORT CONSTANT NumDigitalAlt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : I0

END IMPORT

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : i0

147

148 APPENDIXF. THE ASWIN RSML-E- PHASE6

END IMPORT

IMPORT DigialAlt_P6 : [i TO NumDigitalAlt] OF INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT AnalogAlt_P6 : [i T0 NumAnalogAlt] OF AboveBelowType

END IMPORT

IMPORT DigitalQuality_P6 : [I TO NumDigitalAlt] OF AltitudeQualityType

END IMPORT

IMPORT AnalogQuality_P6 : [i T0 NumAnalogAlt] OF AltitudeQualityType

END IMPORT

IMPORT INTERFACE AltitudeVoter_P6 :

END IMPORT

EXPORT Altitude_P6 : AboveBelowType

END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType

END EXPORT

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

149

END INTERFACE

DEFINITION :

MODULE_INSTANCE ThresholdedDigital_P6 : [I TO NumDigitalAlt] OF ThresholdedAltitude_P6

PARENT : NONE

ASSIGNMENT

Altitude_P6 := DigitalAlt_P6,

Threshold_P6 := EXTEND Threshold_P6 TO [I TO NumDigitalAlt] OF INTEGER,

AboveHysteresis_P6 := EXTEND GoAboveHyst_P6 TO [I TO NumDigitalAlt] OF INTEGER,

BelowHysteresis_P6 := EXTEND GoBelowHyst_P6 TO [i TO NumDigitalAlt] OF INTEGER

END ASSIGNMENT

END MODULE_INSTANCE

SLOT_INSTANCE AltitudeVoter_P6 :

ASSIGNMENT

Num_of_Alt

Altitudes

Qualities

END ASSIGNMENT

END SLOT_INSTANCE

:= NumDigitalAlt_P6 + NumAnalogAlt_P6,

:= ThresholdedDigital_P6.Result_P6 [AnalogAlt_P6,

:= DigitialQuality_P6 [AnalogQuality_P6

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoter_P6.Altitude_P6

EQUALS AltitudeVoter_P6.Altitude_P6

END EXPORT

EXPORT Altitudequality_P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoter_P6.AltitudeQuality_P6

EQUALS AltitudeVoter_P6.AltitudeQuality_P6

END EXPORT

END DEFINITION

END MODULE

INTERFACE AltitudeVoter_P6 :

IMPORT CONSTANT Num_of_Alt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : 50

END IMPORT

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

150 APPENDIXF. THE ASWIN RSML-E- PHASE6

IMPORT Altitudes_P6 : [i TO Num_of_Alt_P6] OF AboveBelowType

END IMPORT

IMPORT Qualities_P6 : [i TO Num_of_Alt_P6] 0F AltitudeQualityType

END IMPORT

EXPORT Altitude_P6 : AboveBelowType

END EXPORT

EXPORT Quality_P6 : AltitudeQualityType

END EXPORT

END INTERFACE

MODULE Air_and_Quality_P6 :

INTERFACE :

IMPORT Altitude_P6 : AboveBelowType

END IMPORT

IMPORT Quality_P6 : AltitudeQualityType

END IMPORT

EXPORT Result : Alt_and_QualityType

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Alt_and_QualityType :

PARENT : NONE

EQUALS Above IF

TABLE

Altitude_P6 = Above : T ;

Quality_P6 = Valid : T ;

END TABLE

EQUALS Below IF

TABLE

Altitude P6 = Below : T ;

Quality_P6 = Valid : T ;

END TABLE

EQUALS Invaid IF Quality P6 = Invalid

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

151

END EXPORT

END DEFINITION

END MODULE

MODULE Most_P6 : AltitudeVoter_P6

DEFINITION :

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : Below

EQUALS Below IF

COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [i TO Num_of_Alt_P6] OF Altit

EXTEND Below TO [i TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6) >

COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [i TO Num_of_Alt_P6] OF Altit

EXTEND Above TO [I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

EQUALS Above IF

COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [1 TO Num_of_Alt_P6] OF Altit

EXTEND Below TO [i TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6) <=

COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [I TO Num_of_Alt_P6] OF Altit

EXTEND Above TO [I TO Num_ofAlt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6 :

PARENT : NONE

DEFAULT_VALUE : Valid

EQUALS Valid IF

EXISTS(Qualities_P6 = EXTEND Valid TO [i TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt

EQUALS Invalid IF

FORALL(Qualities_P6 = EXTEND Invalid TO [! TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_A

END EXPORT

END DEFINITION

END MODULE

MODULE AnyCrossed_P6 : AltitudeVoter_P6

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

152 APPENDIXF. THE ASWIN RSML-E- PHASE6

DEFINITION :

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : Below

TRANSITION Below TO Above IF

EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) T0 [I T0 Num_of_Alt_P6] 0F A1

EXTEND Above T0 [i T0 Num_of_hlt_P6] 0F AltitudeQualityType, Num_of_Alt_P6)

TRANSITION Above TO Below IF

EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO [I TO Num_of_Alt_P6] OF A1

EXTEND Below T0 [i TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6 :

PARENT : NONE

EQUALS Valid IF

EXiSTS(Qualities_P6 = EXTEND Valid TO [i TO Num_of_Alt] 0F AltitudeQualityType, Num_of_Alt)

EQUALS Invalid IF

FORALL(Qualities_P6 = EXTEND Invalid TO [i T0 Num_of_Alt] 0F AltitudeQualityType, Num_of_Alt)

END EXPORT

END DEFINITION

END MODULE

MODULE AllCrossed_P6 : AltitideVoter_P6

DEFINITION :

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : Below

TRANSITION Below TO Above IF

FOKALL(EXTEND Alt_and_Ouality_P6(Altitudes_P6, Qualities_P6) TO [I TO Num_of_Alt_PS] OF A1

EXTEND Above TO [i TO Num_of_Alt_P6] 0F AltitudeOualityType, Num_of_Alt_P6)

TRANSITION Above TO Below IF

FORALL(EXTEND Alt_and_Ouality_P6(Altitudes_PS, Qualities_P6) TO [I T0 Num_of_Alt_P6] 0F A1

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

153

EXTEND Below TO [I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6 :

PARENT : NONE

EQUALS Valid IF

EXiSTS(Qualities_P6 = EXTEND Valid TO [i TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

EQUALS Invalid IF

FORALL(Qualities_P6 = EXTEND Invalid TO [i TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

END EXPORT

END DEFINITION

END MODULE

MODULE Failure_OUT_P6 :

INTERFACE :

IMPORT Failure_P6 : Boolean

END IMPORT

IMPORT PulseInterval_P6 : TIME

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT Watchdog_Pulse_P6 : Boolean

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Watchdog_Pulse_P6 :

PARENT : NONE

DEFAULT_VALUE : false

TRANSITION False T0 True IF

TABLE

DURATION(PKE(Watchdog Pulse P6) INSTATE False, 0 S, Clock) >= PulseInterval_P6 : T ;

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

154 APPENDIXF. THE ASWIN RSML-E- PHASE6

Failure_P6

END TABLE

TRANSITION True TO False IF

DURATION(PRE(Watchdog_Pulse_P6) IN_STATE True, 0 S, Clock) >= 0 S

END EXPDRT

END DEFINITION

END MODULE

: F ;

MODULE ASW_KEQ_P6 :

INTERFACE :

EXPORT CON_DOI_P6 : DOlControlledType

Purpose : a*L This variable represents the ASW's

commanded status of the Device of Interest (DOI). L*&

Interpretation : _*L

\begin{quote}

\begin{mydescription}

\item[0n:] Indicates that the D0I is commanded to be Dn. The D01

is commanded to be on when the aircraft enters the target region

for turning the D0I on, the D0I is not already on,

and the ASW is not inhibitied.

\item[0ff:] Indicates that the D0I is commanded to be 0ff. The

D0I is commanded to be off when the aircraft leaves the target

region and after a certain period of time has passed. If this

time is \RUndefined, then the ASW will never turn the D0I Off.

\item[Uncommanded:] Indicates that the D0I is not commanded by the

ASW. This CON\DOI variable will be equal to Uncommanded in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

\end{quote}

L*&

Issues : a*L

\begin{myitemize}

\item If the aircraft leaves the target area and the DOI is on,

but was {\em not} commanded to be on by the ASW, should the ASW

turn it off?

\end{myitemize}

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

155

L*&

END EXPORT

EXPORT CON_Failure_P6 : Boolean

Purpose : &*L This variable represents the ASW's indication of

whether or not it has failed to the external world. It is

potentially displayed to the pilot and/or used by other subsystems

on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW has failed. The ASW is

considered to be failed if it attempts to turn on the DOI, but the

D0I does not turn on after a certain timeout period.

\item[False:] Indicates that the ASW has not failed. The ASW is

considered to be operating normally if none of the failure

conditions are true.

\end{mydescription}

\end{quote}

L*&

END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW's idea of what the

altitude of the aircraft is. It is related to the Altitude_Quality

variable. L*&

END IMPORT

IMPORT MON_Altitude_Quality_P6 : AltitudeQualityType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the

Altitude of the aircraft is. L*&

END IMPORT

IMPORT MON_DOI_P6 : 0n0ffType_P6

Purpose : &*L This variable indicates the monitored status of the

D01. The D0I can be turned on or off by other devices/systems on

board the aircraft, so the ASW needs an accurate accounting of the

status of the D0I L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

156 APPENDIXF. THE ASWIN RSML-E- PHASE6

\item[On:] Indicates that the DOI is currently on.

\item[Off:] Indicates that the DOI is currently off,

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Reset_P6 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be

reset or not. In a step where the ASW is reset, this variable will

have the value true. In all others, this variable will have the

value false. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW as been reset.

\item[False:] Indicates that the ASW has not been reset.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Inhibit_P6 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the

ASW will behave as specified by other requirements.

\end{mydescription}

\end{quote}

L,&

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER

UNITS : ft

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

157

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family

member when the REQ module is instantiated. It is the altitude

at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P6 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : I0 s

Purpose : &*L This constant will be defined by each family

member. It is the length of time after which the ASW will

declare a failure if there is not valid altitude. L#&

END IMPORT

IMPORT CONSTANT D01_Timeout_P6 : Time

UNITS : NA

EXPECTED_MIN : 1 s

EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the D0I does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P6 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoBelowAction_P6 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

158 APPENDIXF. THE ASWIN RSML-E- PHASE6

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

END INTERFACE

DEFINITION :

STATE_VARIABLE ASW_System_Mode_P6 :

VALUES : {Startup, Normal0perating, Degraded, Failed, Reset}

PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION Normal0perating T0 Reset IF MON_Reset_P6

TRANSITION Degraded T0 Reset IF MON_Reset_P6

TRANSITION Normal0perating TO Degraded IF

EpisodeMonitor_P6 = QualifyingEpisode

TRANSITION Degraded T0 NormalOperating IF

DURATION (MON_Altitude_Quality_P6 = Valid, 0 S, Clock) > i MIN

TRANSITION Reset T0 Normal0perating IF

DURATION(PRE(ASW_System_Mode_P6), 0 s, Clock) >= 0 S

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

159

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P6 :

VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}

PARENT : NONE

Purpose : _*L This simple state variable tracks whether or not

we have met the conditions for being in degraded functionality

mode. Namely, whether or not we have seen two periods of

invalid altitude lasting I second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF

DUKATION(MON_Altitude_Quality_P6 = Invalid, 0 S, Clock) > I S

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE

DURATION(MON_Altitude_Quality_P6 = Invalid, 0 S, Clock) > i S : T ;

DURATION(PRE(EpisodeMonitor_P6) = FirstEpisode) > I S : T ;

END TABLE

TRANSITION FirstEpisode TO NoEpisode IF

DURATlON(PRE(EpisodeMonitor_P6) = FirstEpisode) >= 1 MIN

TRANSITION QualifyingEpisode TO NoEpisode IF

DURATION(MON_Altitude_Quality_P6 = Valid, 0 S, Clock) >= 2 MIN

END STATE_VARIABLE

MODULE_INSTANCE ASW_Operating_Mode_P6 : ASW_Operating_Mode_Def_P6

PARENT : ASW_System_Mode_P6.NormalOperating

ASSIGNMENT

MON_Altitude_P6 :=

MON_Altitude_Quality_P6 :=

MON_DOI_P6 :=

MON_Inhibit_P6 :=

Threshold_P6 :=

Invalid_Alt_Failure_P6 :=

DOI_Timeout_P6 :=

GoAboveAction_P6 :=

GoBelowAction_P6 :=

GoAboveHyst_P6 :=

GoBelowHyst_P6 :=

DOI_Delay_P6 :=

END ASSIGNMENT

END MODULE_INSTANCE

MON_AIt itude_P6,

MON_AIt idue_Quality_P6,

MON_DOI_P6,

MON Inhibit_P6,

Threshold_P6,

Invalid_Alt _Failure_P6,

DOI_Timeout_P6,

GoAboveAct ion P6,

GoBelowAction_P6,

GoAboveHyst_P6,

GoBelowHyst_P6,

OS

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

160 APPENDIXF. THE ASWIN RSML-E- PHASE6

MODULE_INSTANCE ASW_Degraded_Mode_P6 : ASW_Operating_Mode_Def_P6

PARENT : ASW_System_Mode_P6.Degraded

ASSIGNMENT

MON_Altitude_P6 :m MON_Altitude_P6,

MON_Altitude_Quality_P6 := MON_Altidue_Quality_P6,

MON_DOI_P6 := MON_DOI_P6,

MON_Inhibit_P6 := MON_Inhibit_P6,

Threshold_P6 := Threshold_P6,

Invalid_Alt_Failure_P6 := Invalid_Alt_Failure_P6,

DOI_Timeout_P6 := DOI_Timeout_P6,

GoAboveAction_P6 := GoAboveAction_P6,

GoBelowAction_P6 := GoBelowAction_P6,

GoAboveHyst_P6 := GoAboveHyst_P6,

GoBelowHyst_P6 := GoBelowHyst_P6,

DOI_MinDelay_P6 := 2 S,

DOI_MaxDelay_P6 := 6 S

END ASSIGNMENT

END MODULE_INSTANCE

EXPORT CON_DOI_P6 :

PARENT : NONE

DEFAULT_VALUE : Uncontrolled

EQUALS ASW_Operating_Mode_P6.CON_DOI_P6

IF ASW_System_Mode_P6 = NormalOperating

EQUALS ASW_Degraded_Mode_P6.CON_DOI_P6

IF ASW_System_Mode_P6 = Degraded

EQUALS Uncontrolled IF

TABLE

ASW_System_Mode_P6 = Failed : T * ;

ASW_System_Mode_P6 = Reset : * T ;

END TABLE

END EXPORT

EXPORT CON_Failure_P6 :

PARENT : NONE

DEFAULT_VALUE : False

TRANSITION False TO True IF

TABLE

ASW_System_Mode_P6 = NormalOperating : T * ;

ASW_Operating_Mode_P6.CON_Failure_P6 : T * ;

ASW_System_Mode_P6 = Degraded • * T ;

ASW_Operating_Mode_P6.CON_Failure_P6 : * T ;

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

161

END TABLE

TRANSITION True TO False IF ASW_System_Mode_P6 = Reset

END EXPORT

END DEFINITION

END MODULE

MODULE ASW_0peratingMode_Def_P6 :

INTERFACE :

EXPORT CON_D01_P6 : D01ControlledType

END EXPORT

EXPORT CON_Failure_P6 : Boolean

END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType

END IMPORT

IMPORT MON_Altitude_Quality_P6 : AltitudeQualityType

END IMPORT

IMPORT MON_D01_P6 : 0n0ffType_P6

END IMPORT

IMPORT MON_Inhibit_P6 : Boolean

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER

UNITS : ft

EXPECZ]_D_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P6 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : I0 s

END IMPORT

IMPORT CONSTANT D01_Timeout_P6 : Time

UNITS : NA

EXPECTED_MIN : I s

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

162 APPENDIXF. THE ASWIN RSML-E- PHASE6

EXPECTED_MAX : 5 s

END IMPORT

IMPORT CONSTANT GoAboveAction_P6 : ActionType

END IMPORT

IMPORT CONSTANT GoBelowAction_P6 : ActionType

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT DOI_MinDelay_P6 : TIME

Purpose : &*L This parameter to the ASW operating module

determines whether or not we will wait to turn the D0I on. If it

is greater than zero, then we will wait. It represents the

minium waiting time L*&

END IMPORT

IMPORT D01_MaxDelay_P6 : TIME

Purpose : &*L This parameter to the ASW operating module

determines the maximum waiting time that we will stay in a

Delayed action state before giving up and returning to NoAction

L*&

END IMPORT

END INTERFACE

DEFINITION :

EXPORT CON_DOI_P6 :

PARENT : NONE

DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

163

TABLE

GoBelowAction = Turn0n : T * ;

ActionBelow_P6.PerformAction_P6 : T * ;

GoAboveAction = Turn0n • * T ;

ActionAbove_P6.PerformAction_P6 : * T ;

END TABLE

TRANSITION Uncommanded TO 0ff IF

TABLE

GoBelowAction = TurnOff : T * ;

ActionBelow_P6.PerformAction_P6 : T * ;

GoAboveAction = TurnOff ' * T ;

ActionAbove_P6.PerformAction_P6 : * T ;

END TABLE

TRANSITION 0n T0 Uncommanded IF WHEN(MON_D01_P6 = 0n, False)

TRANSITION Off T0 Uncommanded IF WHEN(MON_DOI_P6 = 0ff, False)

END EXPOKT

MODULE_INSTANCE ActionBelow_P6 : DOI_Action_P6

PARENT : NONE

ASSIGNMENT

Direction_P6 := Down,

ThresholdedAlti%ude_P6 := MON_Altitude_P6,

MinDelay_P6

MaxDelay_P6

AltitudeQuality_P6

Action0K_P6

Clock

END ASSIGNMENT

END MODULE_INSTANCE

:= DOI_MinDelay_P6,

:= DOI_MaxDelay_P6,

:= MON_AlitudeQuality_P6,

:= DOI_Action_0k_P6(),

:= Clock

MODULE_INSTANCE ActionAbove_P6 : DDI_Action_P6

PARENT : NONE

ASSIGNMENT

Direction_P6 := Up,

ThresholdedAltitude_P6 := MON_Altitude_P6,

MinDelay_P6

MaxDelay_P6

AltitudeQuality_P6

Action0K_P6

Clock

END ASSIGNMENT

END MODULE_INSTANCE

:= DOI_MinDelay_P6,

:= DOI_MaxDelay_P6,

:= MON_AlitudeQuality_P6,

:= DOI_Action_0k_P6(),

:= Clock

MACK0 DOI_Action_0k_P6(act IS ActionType) :

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

164 APPENDIXF. THE ASWIN RSML-E- PHASE6

TABLE

MON_Inhibit_P6 : F F ;

CON_Failure_P6 : F F ;

MON_DOI_P6 = On : T * ;

act = 0n : F * ;

MON_DOI_P6 = 0ff : * T ;

act = Off • * F ;

END TABLE

END MACRO

EXPORT C0N_Failure_P6 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS TRUE IF

TABLE

DURATION(AttempZingOn(), 0 S, Clock) > DOI_TimeouZ_P6

DURATION(Attempting0ff(), 0 S, Clock) > DOI_Timeout_P6

DURATION(MON_Altitude_Quality_P6 = Invalid, 0 S, Clock)

PKE(C0N_Failure_P6) = False

END TABLE

:T***;

:*T**;

:**T*;

"***T;

EQUALS FALSE IF

TABLE

DURATION(AttemptingOn(), 0 S, Clock) > DOI_TimeouZ_P6 : F ;

DURATION(Attempting0ff(), 0 S, Clock) > DOI_Timeout_P6 : F ;

DUEATION(MON_Altitude_Quality_P6 = Invalid, 0 S, Clock) : F ;

PRE(C0N_Failure_P6) = False : F ;

END TABLE

END EXPORT

MACRO AttemptingOn() :

TABLE

MON_DOI_P6 = Off : T ;

CON_DOI_P6 = On : T ;

END TABLE

END MACRO

MACRO Attempting0ff() :

TABLE

MON_DOI_P6 = 0n : T ;

C0N_DOI_P6 = 0ff : T ;

END TABLE

END MACRO

END DEFINITION

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

165

END MODULE

MODULE ThresholdedAltitude_P6 :

INTERFACE :

IMPORT Altitude_P6 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P6 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P6 : Integer

UNITS : ft

EXPECTED MIN : 50

EXPECTED MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P6 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P6 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Result_P6 :

PARENT : NONE

DEFAULT_VALUE : Above IF

TABLE

DEFINED(Altitude_P6) : T ;

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

166 APPENDIXF. THE ASWIN RSML-E- PHASE6

Altitude_P6 > Threshold_P6 : T ;

END TABLE

DEFAULT_VALUE : Below IF

TABLE

DEFINED(Altitude_P6) : T ;

Altitude_P6 <= Threshold_P6 : T ;

END TABLE

DEFAULT_VALUE : UNDEFINED IF NUT (DEFINED(Altitude_P6))

EQUALS Above IF

TABLE

DEFINED(Altitude_P6) : T ;

Altitude_P6 > EffectiveThreshold_P6 : T ;

END TABLE

EQUALS Below IF

TABLE

DEFINED(Altitude_P6) : T ;

Altitude_P6 <= EffectiveThreshold_P6 : T ;

END TABLE

EQUALS UNDEFINED IF N0T (DEFINED(Altitude_P6))

END EXPORT

STATE_VARIABLE ApplyHisteresis_P6 :

VALUES : {NoHyst, Above, Below}

PAKENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF

TABLE

DEFINED(Altitude_P6) : T ;

WHEN(Altitude_P6 < Threshold_P6, False) : T ;

END TABLE

TRANSITION NoHyst T0 Below IF

TABLE

DEFINED(Altitude_P6) : T ;

WHEN(Altitude_P6 > Threshold_P6, False) : T ;

END TABLE

TRANSITION Above T0 NoHyst IF

TABLE

DEFINED(Altitude_P6) :TT;

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

167

WHEN(Altitude_P6 < Threshold_P6 + AboveHysteresis_P6, False) : T * ;

WHEN(Altitude_P6 > Threshold_P6 - BelowHysteresis_P6, False) : * T ;

END TABLE

TRANSITION Below TO NoHyst IF

TABLE

DEFINED(Altitude_P6) : T T ;

WHEN(Altitude_P6 > Threshold_P6 + AboveHysteresis_P6, False) : T * ;

WHEN(Altitude_P6 < Threshold_P6 - BelowHysteresis_P6, False) : * T ;

END TABLE

END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold_P6 : INTEGER

PARENT : NONE

UNITS : ft

EXPECTED_MIN : _"nreshold_P6 - BelowHysteresis_P6

EXPECTED_MAX : _reshold_P6 + AboveHysteresis_P6

DEFAULT_VALUE : Threshold_P6

EQUALS Threshold_P6 + AboveHysteresis_P6

IF ApplyHysteresis_P6 = Above

EQUALS Threshold_P6 - BelowHysteresis_P6

IF ApplyHysteresis_P6 = Below

EQUALS Threshold_P6

IF ApplyHysteresis_P6 = NoHyst

END STATE_VARIABLE

END DEFINITION

END MODULE

MODULE DOl_Action_P6 :

IN"FEB-mACE :

IMPORT MinDelay_P6 : TIME

END IMPORT

IMPORT MaxDelay_P6 : TIME

END IMPORT

IMPORT CONSTANT Direction_P6 : UpDownType

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

168 APPENDIXF. THE ASWIN RSML-E- PHASE6

END IMPORT

IMPORT ThresholdedAltitude_P6 : AboveBelowType

END IMPORT

IMPORT AltitudeQuality_P6 : AltitudeQualityType

END IMPORT

IMPORT Action0K_P6 : Boolean

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT PerformAction_P6 : Boolean

END EXPORT

END INTERFACE

DEFINITION :

EXPORT PerformAction_P6 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)

END EXPORT

STATE_VARIABLE internal_P6 :

VALUES : {NoAction, Delayed, Perform}

PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction T0 Delayed IF

TABLE

MinDelay_P6 > 0 S : T T ;

Action0K_P6 : T T ;

WHEN(ThresholdedAltitude_P6 = Below) : T * ;

Direction_P6 = Below : T * ;

WHEN(ThresholdedAltitude_P6 = Above) : • T ;

Direction_P6 = Above • * T ;

END TABLE

TRANSITION NoAction T0 Peform IF

TABLE

MinDelay_P6 > 0 S : F F ;

Action0K_P6 : T T ;

WHEN(ThresholdedAltitude_P6 = Below) : T • ;

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

169

Direction_P6 = Down : T * ;

WHEN(ThresboldedAltitude_P6 = Above) : * T ;

Direction_P6 = Up • * T ;

END TABLE

TRANSITION Delayed TO Perform IF

TABLE

DURATION(PRE(internaI_P6) IN_STATE Delayed, 0 S, Clock) >= MinDelay_P6 : T T ;

Action0K_P6

AltitudeOuality_P6 = Valid

Direction_P6 = Down

ThresholdedAltitude_P6 = Below

Direction_P6 = Up

ThresholdedAltitude_P6 = Above

END TABLE

:TT;

:TT;

:T*;

:T*;

"*T;

"*T;

TRANSITION Delayed TO NoAction IF

DURATION(PKE(internaI_P6) IN_STATE Delayed, 0 S, Clock) >= MaxDelay_P6

TRANSITION Perform TO NoAction IF

DURATION(PRE(internaI_P6) IN_STATE Perform, 0 S, Clock) >= 0 S

END STATE_VARIABLE

END DEFINITION

END MODULE

INCLUDE "standard-modules.nimbus"

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

170 APPENDIXF. THE ASWIN RSML-E- PHASE6

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Bibliography

[1] L. Abraido-Fandino. An overview of REFINE 2.0. In Proceedings of the second symposium on

knowledge engineering, Madrid, Spain, 1987.

[2] Mark A. Ardis and David M. Weiss. Defining families: The commonality analysis. In Nineteenth

International Conference on Software Engineering (ICSE'97), pages 649-650, 1997.

[3] J.M. Atlcc and M.A. Bucklcy. A logic-model semantics for SCR software requirements. In S.J. Zcil,

editor, Proceedings of the 1996 ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA '96), pages 280-292, January 1996.

[4] B. Auernheimer and R. A. Kcmmerer. RT-ASLAN: A specification language for real-tinm systems.

IEEE Transactions on Software Engineering, 12(9), September 1986.

[5] D. Batory and S. O'Mally. The design and implementation of ifierarchical software systems with

reusable components. ACM Transactions on Software Engineering and Methodology, 1(4):355-398,

October 1992.

[6] J.L. Bentley. Programming pearls: Little languages. Communications of the ACM, 29(8):711-721,

August 1986.

[7] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving a Product-Line Ap-

proach. Addison-Wesley, 2000.

[8] Rodncy A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics

and Automation, RA-2(1):14-23, March 1986.

[9] Lisa Brownsword and Paul Clemcnts. A case study in successful product line development. Technical

Report CMU/SEI-96-TR-016, Software Engineering Institute, Carnegi_Mellon University, October

1996.

[10] G. Campbell, J O'Connor, C. Mansour, and J. Turner-Harris. Reuse in command and control systems.

IEEE Software, 11 (5):70-79, September 1994.

[11] Grady H. Jr. Campbell, Stuart R. Faulk, and David M. Weiss. Introduction to synthesis. Technical

Report INTRO-SYNTttESIS-PROCESS-90019-N, Software Productivity Consortium, Herdon, VA,

1990.

[12] W. Chan, R.J. Anderson, P. Bcame, S. Burns, F. Modugno, D. Notkin, and J.D. Rcesc. Model

checking large software specifications. IEEE "I_ansactions on Software Engineering, 24(7):498-520,

July 1998.

[13] A.M. Davis. Operational prototyping: A new development approach. IEEE Software, 6(5), September

1992.

171

172 BIBLIOGRAPHY

[141DebraM.Erickson.Structuringforlnalrequirementsspecificationsforreuse:A mobileroboticscase
study.MastersProject,UniversityofMinnesota,April2000.

[15] S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in critical systems. IEEE

Software, vol- 11 (1):21-39, January 1994.

[16] S. Gerhart, D. Craigen, and T. Ralston. Formal methods reality check: Industrial usage. IEEE

TT_nsactions on Software Engineering, 21(2):90-98, February 1995.

[17] Nancy G.Leveson. Intent specifications:an approach to building human-centered specifications.

[18] H. Gomaa. Reusable software requirements and architectures for families of systems. Journal of

Systems and Software, 25(3):189-202, August 1995.

[19] Carl A. Guntcr, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A reference model for require-

ments and specifications. IEEE Software, 17(3):37-43, May/June 2000.

[20] D. Harcl. Statecharts: A visual formalism for complex systems. Science of Computer Programming,

8(3):231-274, June 1987.

[21] D. Harel, H. Lachovcr, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-Trauring, and

M. Trakhtcnbrot. Statcmatc: A working environment for the development of complex reactive sys-

telns. I E EE Trar_actions on Software Engineering, 16(4):403-414, April 1990.

[22] Mats P. E. Heimdahl and Nancy G. Lcvcson. Completeness and consistency in hierarchical state-base

requirements. IEEE Transactions on Software Engineering, 22(6):363 377, June 1996.

[23] Mats P.E. Heimdahl, Jeffrey M. Thompson, and Barbara J. Czerny. Specification and analysis of

intercomponent communication. IEEE Computer. pages 47-54, April 1998.

[24] C. Hcitmcycr, A. Bull, C. Gasm'ch, and B. Labaw. SCR*: A toolset for specifying and analyzing

requirements. In Proceedings of the Tenth Annual Conference on Computer Assurance, COMPASS

95, 1995.

[25] C. L. Heitmeyer, B. L. Labaw, and D. Kiskis. Consistency checking of SCR-style requirements speci-

fications. In Proceedings of the Second IEEE International Symposium on Requirements Engineering,

March 1995.

[26] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consistency checking of requirements

specifications. A CM Transactions on Software Engineering and Methodology, 5(3):231-261, July 1996.

[27] K.L. Heninger. Specifying software requirements for complex systems: New techniques and their

application. IEEE Transactions on Software Engineering, 6(1):2-13, Januaray 1980.

[28] K.L. Heninger, J.W. Kallander, J.E. Shore, and D.L. Parnas. Software Requirements for the A-7e

Aircraft. Technical Report 3876, Naval Research Laboratory, We_shington, D.C., November 1978.

[29] Michael Jackson. Software Requirements and Specifiealions. ACM Press and Addison-Wesley, 1995.

[30] Michael Jackson. The world and the machine. In Proceedings of the 1995 Internation Conference on

Software Engineering, pages 283-292, 1995.

[31] Michael Jackson. Problem Frames: Analyzing and StT"uct'ar_ng Software Development Problems. ACM

Press and Addison-Wesley, 2001.

[32] Michael Jackson and Pamela Zave. Domain descriptions. In Proceedings of the IEEE International

Symposium on Requirements Engineering, pages 56-64, 1992.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

BIBLIOGRAPHY 173

[33] Michael Jackson and Pamela Zave. Deriving specifications from requirements: An exeJnple. In

Proceedings of the Seventeenth International Conference on Software Engineering (ICSE'95), pages

15-24, May 1995.

[34] Matthew S. Jaffe, Nancy G. Leveson, Mats P.E. Heimdahl, and Bonnie E. Melhart. Software require-

ments analysis for real-time process-control systems. IEEE Transactions on Software Engineering,

17(3):241-258, March 1991.

[35] Mchdi Jazayeri, Alexander Ran, a_ld Frank van dcr Linden. Software Architecture for Product Fami-

lies: Principles and Practice. Addison-Wesley, 2000.

[36] B. Kramcr, Luqi, and V. Bcrzins. Compositional semantics of a rcal-timc prototyping language. IEEE

TTun.qaetions on Software Engineering, 19(5):453 477, May 1993.

[37] Juha Kuuscla and Juha Savolaincn. Requirements engineering for product fmnilies. In Proceedings of

the Twenty-Second International Conference on Software Engineering (ICSE'O0), pages 6(_-68, June

2000.

[38] W. Lam. Creating rcusable architectures: Initial cxpcricncc rcport. ACM SIGSOFT Software Engi-

neering Notes, 22(4):39=43, 1997.

[39] W. Lain, J.A. McDcrmid, and A.J. Vickcrs. Ten steps towards systcmatics rcquiremens reuse. Re-

quirements Engineering, 2(2):120-113, 1997.

[40] Nancy G. Levcson. Sample tcas intcnt specification.

[41] Nancy G. Lcvcson, Mats P.E. tteimdahl, and Jon Damon Rcesc. Dcsigning Specification Languages

for Process Control Systcms: Lessons Lcarned and Steps to thc Future. In Seventh ACM SIGSOFT

Symposium on the Foundations on Software Engineering, volume 1687 of LNCS, pages 127-145,

September 1999.

[42] N.G. Lcvcson, M.P.E. ttcimdahl, It. tiildrcth, and J.D. Rccse. Requirements Specification for Process-

Control Systcms. IEEE Transactions on Software Engineering, 20(9):684-706, September 1994.

[43] David C. Luckham, John J. Kcnncy, Larry M. Augustin, James Vcra, Doug Bryan, and Waltcr

Mann. Specification and analysis of systcm architecture using Rapide. IEEE Transactions on Software

Engineering, 21(4):336 354, April 1995.

[44] David C. Luckham, James Vera, Doug Bryan, Larry Augustin, and Frank Bclz. Partial ordcrings

of event sets and their application to prototyping concurrent timed systems. Journal of Systems

Software, 21(3):253-265, June 1993.

[45] Luqi. Real-time constraints in a rapid prototyping language. Computer Languages, 18(2):77-103,

1993.

[46] Luqi and V. Bcrzins. Exccution of a high [evc[real-time language. In Proceedings of the Real-Time

Systems Symposium, 1988.

[47] Robyn R. Lutz. Extcnting the product fami[y approach to support safe reusc. Journal of Systems

and Software, 53:207-217, 2000.

[48] Stcven P. Miller and Alan C. Tribble. Extending the four-variable model to bridge the system-software

gap. In Proceedings of the Twentith IEEE/AIAA Digital Avionics Systems Conference (DASC'01),

October 2001.

[49] J. Neighbors. The draco approach to constructing sofwarc from reusable components. IEEE Trans-

actions on Software Engineering, 10(5):564-574, 1984.

Draft produced on September 29, 2002 UNIVERSITY OF MINNESOTA

174 BIBLIOGRAPHY

[50] D.L. Parnas. On the criteria to bc used in decomposing a system into modules. Communications of

the ACM, 15:1053-1058, December 1972.

[51] D.L. Parnas. On the design and development of program fmnilies. IEEE Transactions on Software

Engineering, 2(1):1-9, March 1976.

[52] D.L. Parnas. Designing software for case of extension and contraction. In Third International Con-

ference on Software Engineering, 1978.

[53] D.L. Parnas and P.C. Clcments. A rational dcsigql process: How and why to fake it. IEEE Transactions

on Software Engineering, 12(2):251-257, 1986.

[54] D.L. Parnas and J. Madey. Functional documentation for computer systems engineering. Science o/

Computer Pr_.rammin9, 25(1):41-61, 1991.

[55] Praxis Critical Systems Linlited. REVEAL: A Keystone of Modern Systems Engineering, issue 1.1

edition, July 2000.

[56] R. Prieto-Diaz. Donlain analysis: An introduction. ACM SIGSOFT Software Engineering Notes,

15(2):47-54, 1990.

[57] Software Productivity Consortium. Consortium Requirements Engineering IIandbook, 1993. SPC-
92060-CMC.

[58] Jeffrey M. Thompson. NIMBUS: A framework for static analysis and simulation of system-level inter-

component communication. Master's thesis, University of Minnesota, December 1999.

[59] Jeffrey M. Thompson, Mats P.E. Heimdahl, and Steven P. Miller. Specification based prototyping

for embedded systems. In Seventh A CM SIGSOFT Symposium on the Foundations on Software

Engineering, number 1687 in LNCS, pages 163-179, September 1999.

[60] Jeffrey M. Thompson, Michael W. Whalen, and Mats P.E. Heimdahl. Requirements capture and

evaluation in NIMBUS: The light-control case study. Journal of Universal Computer Science, 6(7):731-

757, July 2000.

[61] Jeffrey Michael Thompson. Structuring Formal State-Based Specifications for Reuse and the Devel-

opment of Product Families. PhD thesis, University of Minnesota, 2002.

[62] David M. Weiss. Defining families: The commonality analysis. Technical report, Lucent Technologies

Bell Laboratories, 1000 E. Warrenville Rd, Naperville, IL 60566, 1997.

[63] David M. _Veiss and Chi Tau Robert Lai. Software Product Line Engineering: A Family-Based

Software Development Process. Addison-Wesley, 1999.

[64] Michael W. Whalcn. A formal senmntics for RSML -_. Master's thesis, University of Minnesota, May

2000.

[65] P. Zave. An insider's evaluation of PAISLey. IEEE Transactions on Software Engineering, 17(3),
March 1991.

[66] Pamela Zavc. Four dark corners of requirements engineering. ACM Transactions on Software Engi-

neering and Methodology, 6(1):1-29, January 1997.

UNIVERSITY OF MINNESOTA Draft produced on September 29, 2002

Department of Computer Science and Engineering

4-192 EE/CS Building
200 Union Street SE

Minneapolis, Minnesota

Appendix B - Jeffrey M. Thompson's Dissertation

Final Report Page 11 of 12

FinalReport Page12of 12

UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a doctoral thesis by

Jeffrey Michael Thompson

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Dr. Mats P.E. Heimdahl and Dr. Maria Gini

Name of Faculty Adviser(s)

Signature of Faculty Adviser(s)

Date

GRADUATE SCHOOL

Structuring Formal State-Based Specifications

for Reuse and the Development of Product Families

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Jeffrey Michael Thompson

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dr. Mats P.E. Heimdahl and Dr. Maria Gini, Advisor

June, 2002

@ JeffreyMichaelThompson2002

Dedication

T o my dear friends, Mike, Tim,

Andy, and Jeffrey who provided

support and encouragement.

T o my family, who provided my

foundation.

Acknowledgments

I would like to again thank all my family and friends for their support and encour-

agement as I have finished up my doctoral work.

I am indebted to my committee who have provided guidance and support. Niko-

laos Papanikolopoulos who has written recommendation letters for me resulting in

my successful application for the Doctoral Dissertation Fellowship. Maria Gini who

taught me about mobile robotics, was my co-advisor, and agreed to serve both on my

Masters degree and Doctoral degree committees and Rajesh Rajamani who has also

served on both my Masters and Doctoral degree committees.

Steve Miller from the Rockwell-Collins Advanced Technology center has been an

invaluable resource for the work that is presented in this dissertation. Steve's years

of experience in safety-critical systems have been essential to the evaluation of the

work presented herein.

I would especially like to thank Mike Whalen for his insight, knowledge, and

support. Mike and I have went through the entire graduate school process together

and his ideas, and insights are woven into the work presented here. I cannot imagine

what my graduate school experience, or life, would have been like without Mike.

Finally, I would like to thank my primary co-advisor, Mats Heimdahl. First, for

encouraging me to get a doctorate in the first place. Second, for his unwavering

support, patience, and dedication as I undertook the work. I will always be happy to

have attended graduate school with Mats as my advisor.

ii

Abstract

The software in a safety critical system has the potential to cause loss of life, loss

of property/money, or environmental disaster. Researchers have found that most

safety-critical errors are introduced in the requirements, rather than the design and

implementation stages of development. These errors are conceptual in nature and

reflect misunderstandings about the intended operation of the system or the system's

environment. Furthermore, requirements for safety critical systems can be difficult

to express: the software must interact with a variety of analog and digital compo-

nents and be able to detect and recover from error conditions in the environment. To

compound the problems, a requirements specification goes through many changes be-

fore it is completed-these changing requirements are a major cost driver in industrial

projects.

A mathematically precise, or formal, specification of the requirements provides

an unambiguous representation; therefore, use of a formal specification language to

model the requirements promises to improve the quality of (and thus, assurance in)

the requirements. Nevertheless, formal specifications are costly to develop and little

research has been conducted on structuring formal requirements specifications. In

most cases, there is a lack of a clear methodology for specification development.

Ideally, such specifications would be easy to maintain and reuse, particularly in light

of the fact the many companies build families of related systems. Unfortunately, this

is beyond the current state-of-the-art and is a critical barrier to industrial acceptance

of these techniques.

To address these concerns, this dissertation makes three key contributions. First,

.°,

in

we have extended the state-of-the-art in expressing the structure of product fam-

ilies. Second, we have defined a methodology for creating formal specifications of

safety-critical process-control systems that includes the overall process for creating

the specifications as well as techniques directed specifically at reuse. Finally, a mod-

ule construct designed to support the methodology and product family structuring

has been added to the formal specification language RSML -e.

iv

Contents

Introduction 1

1.1 Contributions 3

1.2 Organization 6

Related Work 9

2.1 Early Work 10

2.2 Product Family Engineering 11

2.2.1 Background ll

2.2.2 Product Family Research Concentrations 14

2.2,3 Software Architecture and Software Structuring 20

2.2.4 Product Family Summary 21

2.3 Methodological Background 22

2.3.1 Introduction to Process-Control Systems 23

2.3.2 The Four Variable Model and CoRE 25

2.3.3 The WRSPM Model and REVEAL 30

2.4 Summary 34

3 Case Studies 36

3.1 Altitude Switch (ASW) 36

3.2 Mobile Robotics (MR) 38

3.3 Flight Guidance System (FGS) 42

3.4 Introduction to RSML -e 44

V

4

5

3.5 Summary 50

Product Family Structuring 53

4.1 Extending Product Families 54

4.1.1 n-Dimensional Product Families 54

4.1.2 Hierarchical Product Families 56

4.1.3 Constraints on the Solution 58

4.2 Structuring Technique 58

4.2.1 Representing Hierarchical Product Families 59

4.2.2 Intersection of Sub-Families 61

4.2.3 Addressing Existing Issues 63

4.3 Flight Guidance System 66

4.4 Altitude Switch (ASW) 69

4.4.1 Commonalities and Variabilities for the ASW 69

4.4.2 Structure and Members of the ASW Family 75

4.5 Mobile Robotics 79

4.5.1 Hardware Dimension 79

4.5.2 Behavioral Dimension 83

4.5.3 The Whole Family 86

4.6 Evaluation and Summary 88

Methodology Foundations 94

5.1 The FORMpcs System Model 95

5.2 The FORMpcs Process Framework 97

5.2.1 The ASW Example 99

5.2.2

5.2.3

The Mobile Robotics Example 101

Process Summary 106

vi

6

8

5.3 Languagesand Toolsto SupportFORMpc8 106

5.3.1 Simulationsof the ASW 113

5.3.2 Simulationsof the MobileRobotics 117

5.4 Summary 118

Methodology Overview 119

6.1 FORMpcs ProcessPhases........................ 120

6.1.1 CommonalityAnalysis 120

6.1.2 EnvironmentalVariables..................... 125

6.1.3 Initial Structure.......................... 130

6.1.4 Draft Specification 132

6.1.5 DetailedRequirements...................... 139

6.1.6 SensorsandActuators 144

6.1.7 IterationAmongthe Phases................... 148

6.2 Languagesfor FORMpcs......................... 152

6.3 Summary 155

Module Construct for RSML -e

7.1

7.2

7.3

7.4

7.5

7.6

7.7

156

Overview.................................. 156

GeneralUsage............................... 159

ModuleInstancesWithin theHierarchy................. 164

Initial Values 165

FunctionalModuleSyntax 168

ModuleInterfacesasImports 171

Conclusion................................. 173

Conclusion and Future Directions 175

8.1 Conclusions................................ 175

vii

8.2 FutureDirections 179

Bibliography 182

A Standard Modules for RSML -e 193

B The ASW REQ Model (Phase 5)

C The ASW SOFT Model (Phase 6)

210

227

oo,

vnl

List of Figures

1.1 Framework of Contributions. Bubbles with a bold outline indicate ar-

eas of contribution by this dissertation; bubbles with a grey background

indicate areas where significant research results have been achieved. 5

2.1 An overview of a domain engineering process 13

2.2 Cost-benefit analysis of software product-line engineering 15

2.3 A basic process-control model 23

2.4 The four-variable model 25

2.5 The world, requirements, specification, program, and machine (WR-

SPM) model [32] 30

3.1 Pictures of the Mobile Robots (Photo by Timothy F. Yoon) 40

3.2 The FGS Level 0 context diagram 43

3.3 The definition of the Normal state variable 47

3.4 A summary of the standard mathematical and relational expressions

supported in RSML -e 49

3.5 A summary of the previous value expressions supported in RSML -c 51

3.6 The array expressions currently supported in RSML -c 52

4.1 FGS product family covering flying craft 56

4.2 A simple product family 59

4.3 Hierarchical decomposition and subset structure 60

4.4 Abstract versus non-abstract families 61

ix

4.5 Set intersection and non-hierarchical structure

4.6 Set representation of a near-commonality

4.7 Example of sub-families of FGS

4.8 The ASW family structure visualized in 2 dimensions

4.9 The structure of the Altitude Dimension for the ASW

4.10 A tabular representation of the ASW family decision model

4.11 The mobile robot family along the hardware dimension

4.12 A possible 2-dimensional view of the robot product-line

4.13 Cost-benefit of the FCS Family

62

64

67

76

77

79

86

87

92

5.1 The FORMpcs system model adapted from [83, 109] 96

5.2 Refining REQ to SOFT 98

5.3 The true altitude is mapped to three software inputs 100

5.4 Macro modified to handle the tree inputs instead of the true altitude

as it did in the REQ model 102

5.5 Mobile Robotics platform Random Exploration REQ relation 103

5.6 The definition of the Normal state variable 104

5.7 The NIMBUS Environment 108

5.8 The architecture of the NIMBUS environment 109

5.9 The main window of the NIMBUS Manager 110

5.10 The REQ relation can be evaluated using text files or user input (a)

or interacting with a simulation of the environment (b) 112

5.11 The ASW Excel REQ environment 114

5.12 A mockup of the Pilot's display for the REQ model 115

5.13 Refined models of the environment; (a) using Excel to simulate the

physical process as well as the sensors and (b) using Excel to simulate

the physical process and RSML -e models to model the sensors 116

X

5.14 Summary of the hardware-in-the-loop simulations performed with the

mobile robotics platforms

6.1

6.2

6.3 The

6.4 The

6.5 The

6.6 The

6.7 The

6.8 The

6.9 The

6.10 The

117

A tabular representation of the ASW family decision model 125

The CON_DOI variable in Phase 2 of the methodology 129

System Context Diagram for the ASW in this Phase 130

ThresholdedAltitude Interface in Phase 3 133

CON_Failure variable in Phase 4 of FORMpcs 134

CON_DOI variable in Phase 4 136

CON_Failure variable in Phase Five 140

ASW_System_Mode variable in Phase 5 142

EpisodeMonitor variable in Phase 5 143

Definition of the Altimeters_IN module 149

7.1 The ASW_REQ module, interface diagram 157

7.2 Initial Values of State Variable 167

7.3 The ASW_REQ' model illustrating the utility of nested interface defi-

nitions 173

Framework of Contributions. Bubbles with a Bold outline indicate ar-

eas of contribution by this dissertation; bubbles with a grey background

indicate areas where significant research results have been achieved.

8.1

177

xi

Chapter 1

Introduction

Software plays an increasingly important role in safety-critical systems. An error in

such systems has the potential to cause loss of life, environmental disaster, or loss

of property/money. Examples include medical devices, avionics systems, anti-lock

brakes, and control of nuclear power plants. Unfortunately, the state-of-the-art in

software development for critical systems does not provide industry with the theory,

tools, and techniques to produce the high-quality software needed at a reasonable

cost; the software is often poorly engineered, has hidden errors, and is very expensive

to develop. Therefore, techniques to help increase the quality of software while at the

same time reduce its cost are of utmost importance.

Software development typically begins with a high-level concept for a new system.

Next, a document describing the intended software behavior, i.e., the requirements

of the software, is written (called the requirements specification). Exactly how the

software accomplishes the requirements is determined in the software design and

implementation phase, where the actual working program is constructed. After the

implementation phase, the working program is tested to detect and eliminate errors.

Finally, the software is taken into operation.

Researchers have found that most errors leading to an accident are introduced in

the requirements stage, rather than the design and implementation stages. Tradi-

tionally, requirements specifications have been written in a natural language, such as

English. Unfortunately, these natural language specifications are inherently ambigu-

ousand unclear.Therefore,during the designandimplementation,misunderstand-

ingsof the requirementsoftenleadto designandimplementationmistakesthat may

causeaccidents.To combatthis issue,a formal specification language can be used to

describe the requirements.

A formal specification language has a mathematically well defined semantics; thus,

a requirements specification expressed in such a language has a precise and unam-

biguous meaning. Another advantage of formal specifications is that they can be sup-

ported by tools that allow for visualization, animation, and mathematical analysis of

the requirements. One such formal specification language is RSML -e (Requirements

State Machine Language without Events) [39].

Despite these advantages, formal specification languages have not achieved wide-

spread use in industry. One major obstacle is lack of guidance on the process of writing

a formal requirements specification and descriptions of the most effective techniques

for capturing the requirements in the desired language. Although some work has been

done on such guidelines, it is fragmented and incomplete. Another barrier is cost:

although the use of formal requirements specifications holds the potential to reduce

overall development costs, formal requirements specifications are typically much more

costly to develop than their natural language counterparts.

In today's marketplace, many companies that build critical systems often create

lines of similar products, or product families. Product family members (i.e., the

individual products) share many common features (called commonalities) but vary

in certain well-defined ways (called variabilities). The concept of a product family

is well-understood in most industries. For example, in the auto industry, many cars

from the same maker might share parts; some cars are even built on the same chassis

with different sheet metal and trim, e.g., the Chrysler Concorde and Dodge Intrepid,

or the Ford Taurus and Mercury Sable. Unfortunately, in the software industry it is

commonto seedifferent(but related)productsbeingdevelopedby differentproject

teamswith little coordinationandessentiallyno reuse.

This duplicationof effort is costly;and,consideringthe costof creatinga formal

specification,creatingacompletelyoriginalformalspecificationfor eachfamilymem-

ber is out of the question.Therefore,reuseof the formal requirementsspecifications

in the contextof product familiesis absolutelyessentialfor successfuladoptionby

industry of thesetechniques.Fortunately,a formal foundationfor the requirements

shouldmakereuseeasierthan with traditional, informal techniques.

1.1 Contributions

The basicproblemaddressedby this dissertationis the underutilizationof formal

requirementsspecificationlanguagesin industry. This work reducesa major barrier

to industrial acceptanceof formal specificationtechniquesthroughthe development

of a set of guidelines,i.e., a methodology,for the creationof formal requirements

specificationsfor safety-criticalsystems.

The methodologymust addresshowto organize,or structure, the requirements.

This research has produced structuring techniques which support the development of

software families (for example, a line of pacemakers for different heart conditions),

as well as more ad-hoc techniques suitable for special situations. The techniques are

illustrated in formal specification language RSML -e.

Structuring techniques for requirements are best supported by special require-

ments specification language features that allow related pieces of the formal specifi-

cation to be grouped together. However, researchers have focused on the development

of tools to assist in the creation of formal requirements, analysis of the requirements,

and execution of the formal specifications, but not on techniques describing how to

create the specifications. Thus, many formal specification languages lack such an

organizationalconstruct. A part of the researchwas to designan organizational

constructfor RSML-e. This constructfacilitatesthe techniquespresentedin the

methodologyandallowsRSML-e to beusedin moreextensive,industrial-sizedcase

examples.

Finally,themethodologyintegratesmanyexistingtechniquesandpreviouswork.

This makesthe methodologycomprehensive:practitionerswhowish to apply these

techniquesto their ownsystemswill not haveto readvolumesof researchjournals.

Rather,theessentialsof thecurrentstate-of-the-art,includingmyownworkdescribed

above,will bepresentedin onelocation.

Thus,the contributionsof the dissertationarein threemainareas:

1. the developmentof techniquesto structureformalrequirementsspecifications,

2. the additionof a moduleconstructto RSML-_, and

3. integrationwith existingwork to form a methodology,calledthe Family Ori-

entedRequirementsMethodfor ProcessControlSystems(FORMpcs).

Within thesegeneralareas,therearea numberdifferentdimensionsof contribu-

tionsaswell ascontributionsat differentdepths.This is summarizedin Figure1.1.

The figure containstwo dimensions:(1) the dimensionfrom the mostgeneral(i.e.,

applicableto all softwaresystems)to the mostspecific(i.e., applicableonly to our

specificspecificationlanguageandtechniques)and (2) from themostfundamentalto

themostdetailed.Alongthesedimensions,wehavethreefacetsof contribution: (1)

productfamily structuring,(2) methodologywork,and(3) RSML-_ additions.Bub-

blesin the figurethat havea greybackgroundindicateanareawhereworkhasbeen

done.Bubbleswith a bold (thicker)borderindicateareasin whichthis dissertation

hasmadesignificantcontributions.Bubbleswith a white backgroundand non-bold

borderindicateareasthat arefuturework.

Product Family

RSML" Addltlor

Figure 1.1: Pramework of Contributions. Bubbles with a bold outline indicate areas

of contribution by this dissertation; bubbles with a grey background indicate areas

where significant research results have been achieved.

6

The first line of work is the product family facet. As shownin the figure,this

facetis the most general.Techniquesthat weredevelopedfor product familiesare

extensibleto all software systems including the safety-critical systems of the most

interest to this work. Furthermore, the product family structuring techniques are

also based on the fundamental principles of product families and represent a basic

contribution to the field of product-line development. The next facet of contributions

has been the most explored by this work, and that is not surprisingly the methodology

dimension. The original contributions of the methodology are highlighted and the

methodology is available as a separate document [41]. The final facet of contribution

for this research is the addition of the module construct to RSML -e.

1.2 Organization

The rest of the dissertation is organized more or less around the contribution frame-

work described above with some introductory material where necessary. First, we

will present some background and related work that forms the foundation for much

of the dissertation work in Chapter 2. Next, Chapter 3 presents the three primary

examples for the dissertation work: the Altitude Switch (ASW), Flight Guidance

System (FGS), and Mobile Robotics (MR).

The product family work is the first that will be presented as it is the most

fundamental and allows us to give a very thorough overview of the high-level re-

quirements for the case studies (Chapter 4). In this chapter, we concentrate on the

structures that are present in the product family domain and do not delve deeply

into the process which is used in elicitation of the family requirements (much has

already been written on elicitation and management in the literature, for exam-

ple [117, 116, 5, 16, 18, 20, 53, 12, 21, 28, 96, 95, 112, 100, 50]).

Moving on, Chapter 5 then explains the fundamentals about the types of systems

7

of interest in this report- safety-critical process-control systems- and illustrates vari-

ous models for describing the entities involved. We relate how process control systems

can be thought of in terms of the product family structuring discussed in the pre-

vious chapter. And, we also discuss the low-level micro-process, specification-based

prototyping [109], on which the methodology is based.

The activities and processes of the methodology are presented in Chapter 6. In-

stead of reproducing the entire methodology, only an overview is given here (however,

the entire methodology is available as a technical report [41]). We do illustrate the

overall process and point out where original contributions were made in the develop-

ment of the methodology.

Chapter 6 also presents an overview of a number of formal and semi-formal lan-

guages to which the methodology is applicable. Highlighted in this chapter are the

reuse and modularization capabilities of the language as well as how suitable each

language is to working at the requirements level as opposed to design or implementa-

tion. This chapter also contains an introduction to RSML -e, the formal specification

language developed at the University of Minnesota that we will use in our examples.

The next chapter (Chapter 7) illustrates how a modularity construct can be added

to the RSML -e llanguage to improve its ability to be used in conjunction with the

methodology. These additions, make RSML -_ one of the most suitable languages

in which to develop formal state-based requirements. The additions are primarily

centered around the addition of a reusable module-type construct to the language.

Finally, Chapter 8 presents our conclusions and future work that may be com-

pleted. The dissertation also includes a number of appendices. Appendix A includes

the definition of all the standard modules that are meant to be included with every

specification in the new version of RSML-% Appendix B includes the completed

Altitude Switch (ASW) requirements specification, and Appendix C includes the

completedASWsoftwarespecification.

Chapter 2

Related Work

Much of the thinking behind the work that has been done in structuring programs and

software designs is also applicable to software requirements. Indeed, often a structure

is imposed at the requirements level in large software projects to make the require-

ments easier to comprehend. Nevertheless, structuring at the requirements phase is

fraught with its own, unique problems, e.g., the desire to avoid implementation bias

through the structure of the requirements. This chapter attempts to overview the

most relevant work related to requirements structuring. In addition, later chapters

add more related work that is specific to the topics at hand.

We will begin by examining early work in software system structuring that pro-

vides the basis for much of the object oriented work and component software work

that has followed. Next, we will examine product families (sets of related software ar-

tifacts) and the work that has been done there to facilitate reuse. Related to product

families is work that has been done on macro-structuring of software systems in the

software architecture community. Finally, we will wrap up the chapter by discussion

what previous attempts have been made at methodologies for formal requirements

and process-control systems.

9

10

2.1 Early Work

Muchof the early workon structuringand designof softwaresystemswaswritten

by David Parnaset al. This seminal research lays the groundwork for many later

developments including object oriented analysis and design. Thus, it is good place

to begin to examine research about the structuring and modularization of process

control systems.

In [90] Parnas describes common manifestations of software which is not easily

extensible or contractable. First, he suggests that defining the subsets of the pro-

gram functionality belongs in the requirements phase. In particular, he describes

searching for the minimal subset and then building incrementally on this initial func-

tionality. Indeed, this approach is at the forefront of modern software design and

implementation. Second, Parnas describes information hiding and module definition.

Third, Parnas introduces the concept of thinking about software modules as "soft-

ware machine extensions that will be useful in writing many ... programs." This

idea is fundamental to object oriented design and analysis was well as the even more

modern component-based technologies. Finally, Parnas describes avoiding loops in

the uses graph of the software modules. Avoiding uses loops produces a software

system which is much less interdependent, and therefore less complex. These ideas

are illustrated in the paper through an address processing system example.

Parnas et al. also addresses abstract interfaces in several other papers. In [13,92]

they describe the creation of abstract interfaces for the A7E aircraft specification [46].

This work discusses the importance of defining an abstract "virtual device," which

could be a combination of software and hardware. This enables the developers to

isolate changes in the hardware from the rest of the system. The work also describes

a number of problems with using the methods, for example, virtual devices that are

likely to change or that do not correspond to hardware devices.

11

The ATE project resulted in the creationof the SCR (SoftwareCost Reduc-

tion) [45]languagefor expressingthe requiredbehaviorof process-controlsystems

(discussedin moredetail in the next section). During this time, the four-variable

modelfor process-controlsystemswasdevelopedand later publicizedin [93](more

on the four variablemodeland other referencemodelsfor process-controlsystems

will bepresentedlater in this chapter).

Nevertheless,the work discussedabovedoesnot include sufficientguidancefor

practitionersto be able to developand structure formalmodelsof process-control

systems.Theworkdoesnotaddressreusespecificallyandalsodoesnot addressissues

specificto requirements,for example,howto avoidbiasingor limiting the eventual

implementationof thesoftwarebecauseof thestructurechosenfor the requirements.

More work is neededto further refinethe basicideaspresentin this foundational

worksothat it is (1) completeand (2) accessibleto practitioners.

2.2 Product Family Engineering

Reuse of in the software domain has been the most successful when reusing software

artifacts across members of a series of related products, i.e., a product family. In this

section, we give an overview of the most relevant work that has been done in the area

of product family engineering, starting out with background of the field, and moving

on to specific research results and results in the related field of software architecture.

2.2.1 Background

A software product-line is a family of related software products designed to take

advantage of their similarities and predicted variabilities. Domain engineering is the

process of studying families of similar software artifacts so as to make it easier to

build the individual members of the family. The concept of a program family was

12

originallydevelopedby Parnasin [89]andlater expandedin [90]. For the purposes

of this discussion,wewill take the terms domain,product family, programfamily

and product line to beequivalent.Parnasgivesa pragmaticdefinitionof program

families:

We consider a set o.f programs to constitute a ,family whenever it is worth-

while to study the programs -from the set by first studying the common

properties of the individual members. [89]

Parnas observed that often programmers would create new programs by modi-

fying existing programs. This process usually involved a reverse step where parts

of the working program were discarded. The new program was sometimes crippled

by design assumptions made for the original program that did not apply to the new

program. Thus, Parnas postulated that it would better to start out by defining what

was common about all such programs and successively refining the design until you

had working programs as the leaves of a tree structure, with nodes within the tree

representing the various design decisions.

The basic idea behind software product line engineering is shown in Figure 2.1.

The development process begins by studying the domain - the family of software

programs that is desired by the customer. The result of this analysis is some appli-

cation engineering support. Researchers differ in what exactly should be provided to

support the application engineering process, for example, in FAST (Family-oriented

Abstraction, Specification, and Translation) [117] the application support is typically

a domain specific language (DSL) and associated application generation facilities. In

other approaches, the product of domain engineering might be a reference architec-

ture that can be used to build each family member. After the domain engineering

artifacts have been created, they are then used in the application engineering process

to produce the individual family members.

13

Domain Engineering

Engineering
Support

Application Engineering

Figure 2.1: An overview of a domain engineering process

14

The cost benefit ratio of product-lineengineeringis clear and is illustrated in

Figure2.2. Domainengineeringhasthe effectof makingtheslopeof thecostline less

because(presumably)the applicationengineeringsupport (the product of domain

engineering)makesit lesscostly to build eachfamilymember.Thus,giventhe cost

savingsto buildeachfamily memberdueto the applicationengineeringsupport,the

teammust build enoughfamily membersto makeup the costof the initial domain

engineering.

Of course,if product familyengineeringwasaseasyasit soundsfrom thissimple

introduction it wouldnot be the activeareaof researchit is today. Therearemany

problemswith establishingthe requirementsfor and creatingsupport for software

product linesthat arecurrentlybeingaddressedby researchers.In the next section,

wewill giveanoverviewof variouslinesof foundationalresearchin theproductfamily

area.

2.2.2 Product Family ResearchConcentrations

In recentmonths, this areaof researchhasgowndramaticallyasmany that were

formallyprimarily concernedwith softwarearchitecturehavebecomemoreconcerned

with productfamilies.Therefore,acompleteviewof all researchthat ishappeningin

the field cannot bepresentedhere.Instead,wewill focuson the foundationalwork

aswellaswork that dealsspecificallywith the requirements for a product line, which

is the work most relevant to this dissertation.

FAST by David Weiss et al.'. The work on FAST (Family-oriented Abstraction,

Specification, and Translation) [117, 4] produced the first significant results in the field

of product-line engineering. Based directly on Parnas' work, FAST focuses on using

domain engineering to develop a domain specific language (DSL) and application

15

Cost

Point at which product-line 1

engineering begins to

benefit the project J

of Family Members needed to

Pay for Do main Engineering

l: using product-line

engineering

standard

development

s S

•P

Number of Family Members

Figure 2.2: Cost-benefit analysis of software product-line engineering

16

generation facilities as the application engineering support (see Figure 2.1). The

FAST approach has been applied to over 25 domains including a floating weather

station [117], a commands and reports for the AT&T 5ESS telephone switch [19], and

auditing software for the 5ESS [33]. The FAST process is one of the most developed

of the product-line engineering approaches and is formally documented in [117].

The aspect of FAST most useful to the work presented in this dissertation is

commonality and variability analysis [117, 116, 18], which focuses on identifying the

aspects of the product family which are common across all members versus those

which vary from member to member. The FAST researchers identified what informa-

tion should be specified about commonalities and variabilities as well as the process

that should be used to discover them.

Commonalities and variabilities can be used as a basis for thinking about the

structure of the system, which is why they are of interest. Nevertheless, FAST (or any

other product-line engineering approach) does not say how to use the commonalities

and variabilities to help to structure the system.

Lam's Work: Unlike the FAST work described above, the goal of Lam's approach

to product-line engineering was not the explicit development of a product line but

rather a way to facilitate requirements reuse. In [59] Lam describes the RACE

(Reusable Architecture Creation and Employment) process for product-line engineer-

ing. In RACE, the result of domain engineering is a reusable architecture that is

adapted to work with each member of the product family. This work is based closely

on previous work that was done by Tracz on domain specific software architectures

(DSSA) [112, 113].

Lam's work is based on experiences in specifying the requirements for aero-engine

control systems at Rolls-Smiths Engine Controls [58, 60, 61, 62]. The work is use-

ful because Lain approaches the problem from the standpoint of requirements reuse

17

rather than concentratingentirelyon just the ideaof the product-line. This makes

Lam'sworkespeciallyinterestingfor thisdissertation,sinceoneof thegoalsis to reuse

formalrequirementsfor process-controlsystems.Nevertheless,Lamwork is madeup

of a collectionof approaches,someoverlapping,that workedin specificsituations

relatedto the Rolls-SmithsEnginescase-study.Lam doesnot generalizethe work,

andthereforethesimplerand moreelegantformulationprovidedby Weisset al. and

the FAST approach is a more solid foundation on which to build new techniques.

Lutz' work: In the past several years, Robyn Lutz has started to do some work

on the safety analysis of product families [67, 68]. The basis of this work is Lutz'

extensive experience with projects at the Jet Propulsion Laboratory (JPL). She has

discovered a number of issues with current product-line engineering approaches that

are of immediate concern when looking at adapting the product-line approach to work

with the methodology that we are proposing. These issues are:

• Near commonalities. These are properties that are true for almost all the

systems in the domain. Lutz presents two approaches to the problem: (1)

model them as variabilities, or (2) model them as constrained commonalities.

Nevertheless, Lutz states that she expects that the question of how to deal with

near commonalities will be a recurring issue in product-line engineering.

• Dependencies among options. In this case, the problem is that among the

variabilities there are constrains as to which options can occur together.

• Hierarchy of variabilities. Lutz discusses organizing the variabilities hier-

archically such that all the family members at a certain node share the same

value for a set of parameters of variability. Ultimately, there are many different

trees that could be constructed in this fashion. It is an open issue whether or

18

not a hierarchyof variabilitieswouldbe beneficialand howto determinethe

structuringof the hierarchy.

Lutz' work is usefulbecauseit exposesissuesencounteredwhenapplying the

product-lineengineeringapproachto realsystems.Thesolutionto thethreequestions

above,for example,wouldcontainessentialinformationabout thestructuringof the

commonalitiesandvariabilitiesandhencethestructuringof the specification.Major

stepstowardssucha solutionis exactlywhat is proposedin this dissertation.

Recent Developments: Softwareproduct-lineengineeringhas the potential to

delivergreatcostsavingsandproductivitygainsto organizationsthat providefamilies

of products,aswell asgive thoseorganizationsa competitiveedgein the market-

place.Forsafety-criticalsystems,software-productlineengineeringhasthepotential

to producesystemsthat aremoresafethan their seriallyproducedcounterpartswhile

beingcheaperandfasteroverallto build.

Althoughoneof the main barriersto the useof productfamily techniquesis one

of processand organizationalacceptance,technicalissueshavenot beencompletely

solvedfor product-lineengineering.The techniquesavailablework best for cohe-

siveproductfamilies,wherethe variabilitiesdonot havecomplexinterdependencies.

Whenthis is not the case,it canbe difficult to apply the productfamily approach

eventhoughtheremight be significantcommonalitiesbetweenthe membersof the

family.

Current techniquesfor product-lineengineeringworkwell if the followingcondi-

tionsaremet:

• The systemsin the family sharesignificantcommonalities,and

• The variabilitieswhichdefineeachfamilymemberhavea straightforwarddeci-

sionmodel,i.e., it doesnot requiremanycomplicatedrulesto describehowthe

19

variability valuesareassignedto produceeachfamily member.

Thefirst point describestheessentialfeatureof productfamiliesthat Parnasnoticed

in his work. However,the secondpoint originatesin the practical experienceof

manyresearcherswhohavelaboredto constructsoftwareproduct-lines.Recallthat

RobynLutz observedthat the primary limitations of the product family approach

stemfrom difficultiesin handling"near-commonalitiesand relationshipsamongthe

variabilities"[emphasisadded][69]. Thus,the simplierthe relationshipsamongthe

variabilities,the easierit is to constructthe productfamily.

Recordingthestructureof the productfamilyat the requirements level before an

architecture has been constructed may provide advantages in making an architecture

that is more flexible in the face of changes to the domain. Therefore, we feel that it is

important to develop a structuring technique for product families that is designed to

be used at the requirements level. This would allow the potential to develop analysis

techniques for the product family requirements and could provide insight into the

high-level structure of the architecture. This high-level structure can guide the later

creation of the architecture and is therefore complementary to current work in the

field.

Nevertheless, most of the current approaches to product family engineering focus

on developing the assets (i.e., reference architectures or generation facilities) using

the commonalities and variabilities as a requirements specification for the product

family. The issue of how to structure the architecture to overcome difficulties in

the family itself (such as near-commonalities) is often intermingled with solutions to

general architecture problems. In order to adequately address this large area of work,

we have have devoted the next section to that topic.

2O

2.2.3 Software Architecture and Software Structuring

Software architecture research focuses on leveraging patterns of software design and

programming. Why then, discuss software architecture in the context of the require-

ments for product families? The reason is that much of the recent work that has been

done in product families has been done with only a cursory look at the requirements

problems for product families and with requirements issues intermixed with software

architecture, design and implementation details. Therefore, it is somewhat challeng-

ing to get a complete picture of the work on product-line requirements without taking

at least a small look at research in software architectures.

Much work in the software architecture community has focused on developing

formal languages suitable for describing the software architecture. These architecture

description languages (ADLs) include MetaH [115, 9, 114], Unicon [98], Darwin [72,

70, 71], Wright [2, 3, 86], Aesop [26, 25], Weaves [29, 30], C2 [76, 77], SADL [85, 84],

ArTek [103], and Lilleanna [111] (among others).

Furthermore, as the research in software architectures have progressed, there

have been several efforts to provide a survey of and classification of ADLs includ-

ing Clements [17] and Medvidovic [79, 78]. These surveys have helped the research

community distinguish ADLs from requirements languages and programming lan-

guages as well as provide researchers and practitioners with a good idea of what

constitutes an architecture description language. An ADL is generally expected to

include a method of modeling both components and connectors between components

as well as providing some kind of type checking and configuration language (to sup-

port expressing variabilities of product family members).

Researchers are in agreement that an ADL is not a requirements language; yet,

most work on the structuring of product families focuses on the structuring of the

architecture and views the commonalities and variabilities as a flat structure when,

21

in fact, this is not the case. To compound this issue, much of the recent work in

product families has focused on building a complete solution for a particular family.

This has the positive effect that the work is applicable to real families of systems,

but it has the negative effect that it is often difficult to separate concerns with the

product family requirements from architectural or implementation concerns. This is

especially important for our work, where we wish to discuss a formal expression of

the requirements to do not wish to proceed directly to an object-oriented design and

implementation of the family.

Therefore, in the work presented in this dissertation (Chapter 4) we make a clear

distinction between the structure of the product family requirements versus the struc-

ture of the product family architecture.

2.2.4 Product Family Summary

Current work in product family engineering has been successful at achieving reuse in

limited domains. Many lines of research are helping push the current state-of-the-

art including new techniques for implementing product lines and expressing product

line architectures. In this dissertation, we will address techniques for recording and

reasoning about the structure of the product family requirements; a topic that is

inadequately addressed by current work in the field.

In addition, we will strive to make a distinction between the product family re-

quirements and the remainder of the product family development effort. This is

necessary so that we can integrate formal specifications of the family requirements

into the development effort In the next section, we discuss various system existing

models system for process-control systems and several methodologies that have been

proposed for specification construction.

22

2.3 Methodological Background

Some of the key related work for the methodology is the spiral model of software

development proposed by Boehm [10, 11]. This model advocates managing risk in

a software project by building and testing the project in smaller, more manageable

phases. This is contrasted with the waterfall model [97], that advocates the unrealistic

process of gathering and certifying all the requirements in the project up front and

then proceeding on through the design and implementation phases.

As Parnas and Clements have noted [91], it is impossible that the complete re-

quirements can be established in the beginning of a project because often the customer

does not know or cannot clearly articulate what it is they want, some details become

known only when the implementation or design progresses, and people will naturally

make human errors. Therefore, Parnas and Clements focus on "faking" the rational

design process; in other words, ordering the documentation for a system such that

it appears to have been constructed by an idealized process so that it is accessible

to the persons who need to review it, even though such a process was not followed.

Furthermore, Parnas and Clements go on to state what they perceive as the rational

design process that should be emulated by such documentation.

One of the main reason requirements change is because the customer often does

not understand what it is they need or want until they can see a working version

of the system. This is especially true of, for example, user interface systems. It

is also true for safety-critical process-control systems because it is often difficult to

visualize what the system will do in certain situations from a long list of natural

language requirements. Thus, a prototyping approach where an executable model

of the software is available early in the development life cycle is key to successful

development.

We wish to develop requirements for process-control systems. Therefore, we

23

Sensors I

Environment

Program

t,
Operator

=ml__

Actuators

Figure 2.3: A basic process-control model

should first discuss the theory and general background of the process-control field be-

fore moving on to several different system models for thinking about process-control.

2.3.1 Introduction to Process-Control Systems

A system is a set of components working together to achieve some common purpose

or objective. A process-control system usually involves an environment (i.e., the

world), a program (or multiple programs) whose purpose it is to establish or maintain

certain conditions in the environment, sensors and actuators that allow the program

to get information about the environment and affect the environment, and finally

the operator who can usually input various parameters to the running program and

receive feedback from the running program. This is summarized in Figure 2.3.

Consider the environment of aircraft moving along in three dimensional space. In

this unconstrained environment, airplanes are free to have midair collisions, disrupt

take-off and landing of other aircraft, and so forth. Clearly, this is not desirable;

24

therefore,weneeda process-controlsystemfor air traffic controlthat will allowusto

enforcecertainrestrictionsin the environment,for example,that planesdo not run

into oneanother. To do this, wewill haveto havesomesensors,whichwill giveus

dataaboutthepositionof theaircraft in the system,someactuatorswhichwill allow

usto makecoursecorrectionsfor the aircraft in the system,and possiblyhavesome

operatorinput to guidethesechoices.

Therearea numberof difficultiesin constructingprocess-controlsystems.First,

theenvironmentisa keyelementthat isoftenunderspecifiedand/or misunderstood.

Misunderstandingsabout the environmentin whichthe systemoperateshavebeen

the causeof numerousaccidents.Second,the sensorsandactuatorsoftenprovidean

imperfect,or noisy,viewof therealworld;sensorscanintroduceerrors,andactuators

canfail. Therefore,the programmaylosetrack of the true stateof the environment

and error conditionsin the sensorsand actuatorscanbe difficult (or impossible)

to detect. Finally, the controlleroften hasonly partial control over the process;

therefore,state changescanoccurin the environmentwhenno actuatorcommands

weregivenby the program.

Besidesthe basicobjectiveor function implementedby the program,process-

controlsystemsmayalsohaveconstraintson their operatingconditions.Constraints

maybe regardedasboundariesthat definethe rangeof conditionswithin whichthe

systemmayoperate. Another wayof thinking about constraintsis that they limit

theset of acceptabledesignswith whichthe objectivesmaybeachieved.

Theseconstraintsmayarisefromseveralsources,includingqualityconsiderations,

physicallimitations and equipmentcapacities(e.g.,avoidingequipmentoverloadin

orderto reducemaintenance),processcharacteristics(e.g.,limiting processvariables

to minimizeproductionof byproducts),andsafety(i.e., avoidinghazardousstates).

In somesystems,the functionalgoal is to maintainsafety,sosafetyis part of the

25

M()N ,11 NATREQ IP' CON

IN
Sensors j

i ..

! Environment

i
l..

Actuators
OUT

INPUT SOFT _ OUTPUT

Figure 2.4: The four-variable model.

overall objective as well as potentially part of the constraints.

This model is an abstraction--responsibility for implementing the control func-

tion may actually be distributed among several components including analog devices,

digital computers, and humans. The next sections discuss elaborations of this model

and what are considered system versus software requirements.

2.3.2 The Four Variable Model and CoRE

The four variable model was published by Parnas and Madey [93] and is the closest

to the traditional process-control model. The four variable model was developed from

early efforts to specify the requirements for the A-7 aircraft [46, 45] in a language

called Software Cost Reduction (SCR) [43, 42, 44], which was also developed on the

project.

An overview of the four-variable model is shown in Figure 2.4. For reference, the

26

process-controlmodelhasbeenreproducedin greyinsideof thefour variablemodel.

The four variablemodelconsistsof (not surprisingly four setsof variables(MON,

CON,INPUT, andOUTPUT) andfiverelationsbetweenthosevariables(REQ,NAT,

IN, OUT, and SOFT).

All of the variablesin the modelarecontinuousfunctionsof time. The MON,

or monitored,variablesare thosequantitiesin the environment of the system that

we can observe. An example of a monitored quantity in the hypothetical air traffic

control system mentioned previously might be the altitude of an aircraft. The CON,

or controlled, variables are those quantities in the environment that we can affect.

Thus, altitude is also a controlled quantity in our example.

The relationships between the MON and CON quantities are essential to under-

standing the behavior of the system. The NAT relation expresses the environment

of the process-control system. Thus, the NAT relation expresses how changing the

controlled quantities affects the monitored quantities (CON to MON) as well as con-

straints that exist on any required behavior and behaviors that already exist in the

environment (MON to CON). The REQ relation represents the functions and oper-

ations that we desire to introduce into the environment, and is therefore a relation

from MON to CON.

Monitored and controlled quantities do not correspond to inputs from sensors or

outputs to actuators, they are an idealized representation where we always know their

values to infinite accuracy. Because of problems introduced by noisy and inaccurate

sensors as well as inaccurate or unreliable actuators, the relationship of the monitored

and controlled quantities to the software inputs and outputs is often non-trivial. The

four variable model represents the software inputs and outputs as INPUT and OUT-

PUT respectively and the transformation of monitored quantities to input quantities

as the IN relation (similarly for the OUT relation). Given REQ, IN, and OUT a spec-

27

ification of SOFT, the softwarerequirements,is theoreticallyachievable.However,

the fourvariablemodelleavesopenhowthis specificationshouldbeconstructed,and

howit shouldbestructured.

The four variablemodelhasservedasthe foundationfor severalresearchefforts.

Mostnotably,theworkat theNavalResearchLaboratory(NRL)on theSCRnotation

andour workon specification-basedprototyping [109](whichis discussedfurther in

Chapter5).

To augmentthe four variablemodelandsupport the SCRlanguage,the CoRE

(ConsortiumRequirementsEngineering)[99]methodologywasproducedby theSoft-

wareProductivity Consortium(SPC).Many talentedpeoplecontributedto the de-

velopmentof CoRE and it containsmanyvaluable ideasfor the developmentof

process-controlsystems.In particular, The CoRE guidebook[99]providestechni-

cal informationon how to documentthe environmentalvariablesand how they fit

into thefour-variablemodel,andtheyprovidesomeguidanceonwhichenvironmental

quantitiesaresuitablecandidatesasmonitoredand controlledvariables.

TheCoREprocessbeginswith thesystemrequirementsandendswith a software

requirementsspecification.The overallCoRE processis divided up into five main

phases:

1. Identify Environmental Variables: In this phase,the specifiersidentify

environmentalquantitiesthat the softwarecanmonitor and control. Environ-

mentalconstraints,i.e. constraintswhichwouldexistwithout the presenceof

the system,aredefined;this is calledthe NAT relation. Finally, the structure

of the systemisrepresentedasan entity-relationship(ER) diagram.

2. Preliminary Behavior Specification: In thisphase,afirst draft of thehigh-

levelbehavioralspecification,the REQ relation, is developed.The decisionis

madeasto whichenvironmentalquantitiesaremonitored,controlled,or both.

28

Thedomainsof thecontrolledfunctionsaredefinedandthemonitoredvariables

which effect the valueof the controlledvariableare recorded. Finally, the

numberand type of modemachinesneededis decided.

3. Class Structuring: In this phase,thestructureof thesystemis decided.The

CoREmethodologyattemptsto supporta pseudo-objectorientedstructuring

techniquewhichincludesspecializationandgeneralization.The primarystruc-

turing guidanceis to choosethe objectsbasedon the physicalstructureof the

systemandasanextensionto the ER diagramdevelopedin the first phase.

4. Detailed Behavior Specification: This phaseculminatesin the completion

of the behavioralspecificationof the classesidentifiedin the previousphase.

Thecontrolledvariablefunctionsarecompletelydefinedandthe otherclasses

arerefined.Timing constraints,in termsof wheneachmodemachineisrecom-

puted,arealsoaddressed.

5. Define Hardware Interface: In this phase,the characteristicsof the sensors

andactuatorsaredefinedby definingtheIN andOUT relations.

In practice,thedevelopermustiteratebetweenthesephasesof theCoREmethod-

ologyrather than proceedingthroughthemin a waterfall-likefashion. The CoRE

manual addresses this iterative nature in and provides an overview of both the ideal

and the interactive (realistic) development process. This enables CoRE to provide

both guidelines on what should be contained in the specification as well as how the

specification should be developed. CoRE further addresses the how question by pro-

viding entry and exit criteria for each of the key steps in the model.

CoRE includes many good ideas and suggestions for developers. The guidelines on

identifying the monitored and controlled variables for the system are useful in focusing

the construction of the REQ relation. Also valuable is the process of developing a

29

dependencytreefor the monitoredand controlledvariablesearlyin the specification

life cycle.This helpsto clarify thinking and avoidscirculardependencies,whichare

not permitted in SCRand not recommendedby Parnas[90]. Finally, the overall

processis goodand providesimportant guidanceto specificationdevelopersonhow

to proceedwith the developmenteffort and what informationshouldbe included

at the variousstages. Theseguidelinesprovidesomehelp, but in our experience

moreguidanceis neededto correctlymakethe crucially important selectionand

classificationof the environmentalvariables.

Nevertheless,the CoREmethodologyfalls short in a numberof areas.First, as-

sumingwehavecapturedthe relationsREQ,NAT, IN, and OUT, weneedto derive

the SOFT relation. There is little guidancein the CoRE guidebookaswell as in

the original four variablemodelworkon howto achievethis task. Second,the only

structuring guidelinesare basedon the physicalstructure of the system. Sucha

structurewill not work in generalanddoesnot facilitatereuseof operationalmodes.

Sincemultiple structuringtechniquesarenot presented,therearealsono tradeoffs

betweenthem. Third, the latter phasesof themethodologyareunclearand,in some

cases,self-contradictory.In particular,the "DefineHardwareInterface"stepisamere

twelvepageslong and includesnothingon the structuring or refinementof the IN

and OUT relations.Furthermore,their seemsto besomeconfusionaboutthe differ-

encebetweenmonitored/controlledvariablesandinput/output variablesthroughout

CORE.Finally,CoREdoesnot specificallyaddressreuse(otherthansayingthe reuse

is possibleusingthe classstructuring). It doesnot includeinformationon how to

plan for reuseor structurefor reuse.

30

Environment System

_ visibility _ control

Figure 2.5: The world, requirements, specification, program, and machine (WRSPM)

model [32].

2.3.3 The WRSPM Model and REVEAL

Michael Jackson and Pamela Zave have presented a reference model for requirements

specifications--the world-machine model [48, 50, 51, 120]. The discussion in this

section is based on the formalization of this model provided by Gunter et al. [32].

The main idea behind the world-machine model is a separation of concerns be-

tween the world (or the environment) and the machine (or, the system to be built).

Jackson et al. state that the requirements and problems exist in the world, because

it is the world that we wish to change via the introduction of the machine. Thus

the WRSPM is based on five artifacts grouped roughly into two categories--the ones

relating mostly to the environment (or world) and those that pertain mostly to the

31

computerandsoftware(or the machine).Theseartifactsaredenotedby W, R, S,P,

andM asillustratedin Figure2.5. Theartifacts are:

The World (W): This is domainknowledgethat capturesknowledgeof environ-

mentalfacts.

The Requirements (R): Describeswhat the customerneedfrom the systemex-

pressedin termsof its effecton the environment.

The Specification (S): A lessabstractdescriptionof the desiredbehaviorthat

providesenoughinformationfor a softwaredeveloperto designand implement

a systemthat satisfiesthe requirements.

The Program (P): The program(implementedin someprogramminglanguage)

that implementsthe specificationandrunsonsomemachine.

The Machine (M): Thesystem(computer,associatedhardware,operatingsystem,

etc.) that executesthe program.

Variablesthat belongin the world arecollectivelycallede--the onesbelonging

in themachinearecalleds. The variables in the world e are split into two mutually

exclusive sets eh and ev--the variables in eh are hidden from the system and are

considered to be exclusively in the domain of the environment. The variables in ev are

visible to both the environment and the system. The variables in s are decomposed in

a similar way into s_ and Sh where all variables in sh are hidden from the environment.

With this decomposition of the variables, eh, ev, and s_are visible to the environ-

ment and used in W and R. Variables in e_, sv, and Sh are visible to the system and

used in P and M. The only variables shared between the environment and the system

are in e_ and s.--therefore, the specification S is restricted to use only variables in

32

evand sv and they form the interface between the environment and the system. Fig-

ure 2.5 (from [32]) illustrates the relationship between the variables and the various

artifacts.

The WRSPM is related to the four-variable model discussed in the previous sec-

tion. W corresponds to NAT in the four-variable model. R corresponds to REQ. In

the four variable model, REQ and NAT are somewhat more restrictive than W and

R in that it can seemingly only make assertions about the variables that are shared

between the environment and the system. W and R allow us to make statements

about variables that are hidden from the system (eh). SOFT corresponds to P, and

IN and OUT together correspond to M.

The real difference between these two models is in the consistency and sufficiency

constraints imposed on these various relations. We will not consider these technical

details further in this guide--the interested reader is referred to [32] for a detailed

discussion.

The WRSPM model is intended as a reference model only and does not discuss

how the various variables in e and s are selected. Nor does the method discuss how

the various artifacts are derived or structured--this is a pure reference that simply

discusses the required relationship between these different artifacts.

The REVEAL methodology [94] was developed by Praxis Critical Systems, Lim-

ited as a method based on the world-machine model. REVEAL consists of six stages:

1. Defining the Problem Context: In this stage the goal is to develop an

understanding of the problem (i.e., what it is about the world that you wish

the system to help to achieve) and explore the boundaries of the problem.

2. Identifying Stake holders and Eliciting Requirements: This second stage

is associated with identifying stake holders to the project and eliciting require-

ments and domain knowledge.

33

3. Analyzing and Writing: In the third stage,the requirementsand domain

knowledgearewritten downandanalyzedusingthe completenesscriteriaof the

WRSPMmodel.

4. Verification and Validation: The fourth stageinvolvescheckingthe work

that wasdonein the first threestagesto ensureits accuracy.

5. Use: After thefourth stage,therequirementswill beusedthroughouttherest

of the developmentlife cycle.

6. Maintenance: Shouldany changesto the requirementsbe discovered,then

wemust performmaintenanceon thedescription.This is discussedin thefinal

stageof REVEAL.

The REVEAL methodologyis basedon two key processes:(1) conflictmanage-

ment,and (2) managingrequirements.The work in REVEAL on managingrequire-

mentsis the mostrelevantto this work.

REVEAL implementsa uniquenotionof traceabilityof the requirementsbased

on the WRSPMmodel. In the WRSPMmodelthe requirementsaresatisfiedwhen

the World (W), andthe Specification(S) imply the requirements.That is,

W,S_-R

This concept is referred to as the Adequacy Check by the REVEAL method. REVEAL

uses the adequacy check as a basis for the entire requirements process.

Suppose, for example, that we start out writing down the general requirements

for a system that we are building. We would record these requirements, Rg_n, along

with a description of the World, W, and specification, S. Then, we demonstrate that

W, S _- Rg_n and life is good.

34

Nowwewantto introducemoredetail to Rgen and produce a set of requirements at

a lower level of abstraction. Of course, the detailed requirements, Rdet, are certainly

related to Rgen and certainly that relationship should be preserved in the requirements

documentation. Thus in REVEAL, we would prove the property:

W, Rdet _- Rgen

then, by transitivity, we can reuse the original adequacy check on the general require-

ments so show that the requirements are still satisfied. Doing this provides traceability

to the high-level requirements from the detailed requirements and ensures that if the

high-level requirements change, the proofs for the detailed requirements will no longer

work (as you would expect). This notion of traceability is similar to that proposed

by Leveson [27, 64] for Intent Specifications except that in REVEAL the traceability

is organized around a more formal framework.

The traceability information recorded by the REVEAL methodology combined

with its use of the WRSPM system model make REVEAL a good complement to

the CoRE methodology that we discussed earlier. However, a combination of RE-

VEAL and CoRE would still not serve the needs of practitioners because neither

methodology adequately addresses the issues associated with recording the require-

ments for product families. Furthermore, REVEAL does not address specifically the

issues associated with state-based specification of process-control systems in a formal

language (as CoRE does).

2.4 Summary

To summarize, currently, there is no focused, up-to-date methodology for developing

formal specifications for families of process-control systems. Many useful specifica-

tion languages exist, and there has been much convergence recently on the types of

35

languagesand languagefeatureswhichareneededto expressthesetypesof systems.

Nevertheless,the most recentand completemethodologiesavailableare the CoRE

methodology written a number of years ago for SCR-style specifications and the RE-

VEAL methodology based on the WRSPM model. The CoRE methodology must be

updated to reflect what has been learned about specification construction since its

development (some of which is included in REVEAL) and the REVEAL methodology

does not contain guidance on problems specific to constructing a formal specification

of the requirements.

Both CoRE and REVEAL lack guidance on how to structure and express the

requirements for a whole family of process-control systems and how to achieve reuse

of the specifications. We reviewed product-line engineering, an approach to software

reuse that leverages the similarities between members of a product family to achieve

cost savings and reuse. Unfortunately, much work in product family engineering is

oriented towards the design and implementation of the family rather than at record-

ing and structuring the product families requirements, which are largely composed of

the commonalities and variabilities of the product family. Nevertheless, issues with

product-line engineering that Lutz has raised are key to discovering how to structure

the commonalities and variabilities and thus the requirements. Structuring specifi-

cations, particularly with the goal of reusing operational modes or creating formal

requirements for a product family, is also currently not adequately addressed in the

literature.

Chapter 3

Case Studies

This chapter introduces the three primary running examples of the dissertation: the

Altitude Switch (ASW), the Flight Guidance System (FGS), and Mobile Robots

(MR). All of these examples represent families of process-control systems. The

techniques in the dissertation were also applied to a family of implantible cardio-

defibrillators at Medtronic during the summer of 2001; however, because this infor-

mation is Medtronic proprietary, details about the family and the specifications of it

cannot be included in this dissertation. We also provide an introduction to RSML -e.

3.1 Altitude Switch (ASW)

The first example that we will consider is the Altitude Switch (ASW), which is derived

from the ASW example proposed by Steve Miller from the Rockwell-Collins Advanced

Technology Center [82]. While our example is based on an original system, it is

hypothetical in that we have introduced certain features for demonstration purposes

and we may not represent the full spectrum of possibilities in this one example.

In avionics, the altitude of the aircraft is an essential environmental quantity.

Many devices on board the plane react to changes in the altitude, for example, the

autopilot must know the plane's current altitude in order to know whether to climb

or descend. In addition, there are many other devices on board the plane which rely

on altitude. However, these different devices vary greatly in the types of actions that

36

37

the performin responseto the altitudedata. In addition, the typesof altitude data

differ significantlyfrom systemto systemand from aircraft to aircraft. Wewill use

the ASWis the primary runningexamplefor the dissertation.

Wemight makean initial attempt at a family descriptionsuchasthe following:

The ASW family consists of systems on board the aircraft that utilize

the values from the various altimeters on board to make a choice among

various options for actions (one of which being to do nothing) and perform

the chosen action.

The ASW family could be viewed as a sub-family of a larger family which would

include all aspects of avionics systems. This description does describe all the systems

on board the plane which use the altitude and is therefore a good starting point for

describing our family. However, notice that the particular actions that the system

performs can be largely separated from tasks relating to measuring the altitude and

fusing the results from various different types of altimeters. We will refine this further

in Chapter 4 where we talk about the high-level commonalities and variabilities for

the ASW family.

Clearly, the ASW system must have a method of measuring the altitude. In

avionics, there are various types of altimeters that can be used to measure altitude, for

example, barometric altimeters (that measure altitude by measuring the air pressure),

radio altimeters (that use radio signals to measure altitude), and GPS altitude (that

uses the global positioning system (GPS) satellites to measure altitude). As the

aircraft moves from an area of high air pressure to an area of low air pressure the

barometric altitude will change even if the aircraft remains at the same absolute

distance from sea level. Therefore, the values given by these different altimeter types

are not necessarily comparable to one another directly.

38

In addition, in the avionicsdomainthere are two types of altimeters: analog

and digital. The type of analogaltimetersaredesignedto beusedin thresholding

applications. Rather than providea numericaltitude, theseanalogaltimetersare

hard-wiredat the factoryto reportwhetherthe aircraft is aboveor belowa certain

threshold.This is doneprimarily for costconcerns.Digital altimeters,on the other

hand,do providea numericaltitude. All altimetersthat wewill considerprovidean

indicationof thequality ofthe altitudemeasured(i.e.,whetherthemeasuredaltitude

isgoodor bad). Thenumberandtypeof altimetersoneachplaneis specificto each

family member.

Theparticularaction(s)that the ASWcantakeasaresultof crossinga threshold

vary acrossfamily members;however,in manywaysthe action to beperformedis

orthogonalwith decisionto performthe action.Forthepurposesof this dissertation,

we will primary concentrateon a sub-familyof the ASW family whereand ASW

turns on or off a particularDeviceof Interest(DOI). We will however,explorethe

variousmethodsthat the ASWmightuseto makethe decisionto performthe action.

BecausetheASWistheprimaryrunningexampleforthedissertation,it is usedin

almosteverychapter.Chapter4 givesa morecompleteoverviewof the ASWfamily

by providingtheinitial commonalitiesandvariabilities,explainingandexploringthe

family structure, and giving the decisionmodelfor the ASW family. A high-level

overviewof the ASWspecificationeffortis providedin Chapter5 followedby a more

detailedlook at somepartsof the specificationin Chapter6. Thewaysthat modules

facilitatereuseis examinedin Chapter7.

3.2 Mobile Robotics (MR)

The mobile robotics domain is the second case study for the dissertation. Although it

will not be discussed under every topic, as is the ASW, we will use it to illustrate the

39

productfamily structuringtechniquesin Chapter4 aswell assomeof the high-level

processissuesin Chapter5.

The domainof mobileroboticsthat wewill considerencompassessmall robots

rangingin sizefrom approximately6 incheslong to up to about 2 feet long. The

robotshavealimited speed,andcanoperateeitherautonomously(viaaradiomodem

or radio Ethernet)or via a tethercablegoingto a personalcomputer.The robotics

platformscomefromvariousvendorsandhaveawidevarietyof sensorsandactuators

available.Also,the robotscansupportmanydifferentbehaviors- scoutinganarea,

constructinga map,workingcollectively,andsoforth.

We modelthe mobileroboticsdomainasa product family taking into considera-

tion both the differenthardwareplatformsthat couldbesupportedandthemanydif-

ferentbehaviorswewishedto specify.This provedto bedifficult usingconventional

product-familytechniquesbecausethe mobile robot family is both n-dimensional

and hierarchical [22] (n-dimensional and hierarchical product families are discussed

in Chapter 4).

The mobile robotics domain breaks down along two clear dimensions: the hard-

ware platform and the desired behavior. Each hardware platform conforms to a basic

specification: it can move forward and backward, turn left and right, sense whether

or not an object is in front of it, and so forth. In addition, the hardware platform

may or may not be equipped with some sort of vision system or infra-red camera; the

various sensors used to monitor the environment differ greatly in the speed and accu-

racy with which they provide information. On the behavior side, we can imagine that

a basic behavior might be a random exploration of the robot's environment where

the primary goal of the robot is collision avoidance and recovery. Furthermore, more

complex behaviors can be added, for example, wall following, going through doors,

and finding particular objects. Therefore, along both the hardware and behavior

4O

Figure3.1: Picturesof the MobileRobots(Photoby Timothy F. Yoon)

dimensions, the mobile robot family can be viewed hierarchically.

A family member in the mobile robotics domain will be defined by a pairing of the

desired behavior with the robotic platform. Of course, there are constraints between

the two dimensions and not all behaviors can run on all hardware platforms. For

example, a behavior that requires the robot to find all red objects in a room will

not work unless the robot has a sensor capable of distinguishing red objects from

non-red objects. These complications of the mobile robotics domain will be discussed

in Chapter 4.

As a specific example for this dissertation, we will consider a mobile robotics

domain consisting of three classes each of robots and behaviors. Figure 3.1 shows a

photograph of two of the mobile robots used as an example. Will will consider the

following robotics platforms:

• A custom robot made out of Lego pieces with two infra-red sensors in the front

41

for obstacledetection,a front bumper,andtank-treadlocomotion.Wewill call

this oneLegoBot.

• A Pioneerrobotmadeby ActivMedia[1]whichhasanarrayof sonarsensors,

a gripper,collisiondetectionvia motorstalled,and wheelsfor locomotion.We

will call this onePioneer.

• A Pioneer(seeabove)with a colorvisionsystem.Wewill call this onePioneer

w/Vision

• A small"pickle" robot that canroll around,andjump oversmallobstacles,and

that is equippedwith a camera.Wewill call this onePickle.

The PioneerPlatform [1], is built and sold by ActivMedia, Inc (backgroundof

Figure3.1). The Pioneerincludesanarrayof sonarsensorsin the front andsidesthat

allow it to detectobstacles.To detectcollisions,the Pioneermonitorsits wheelsand

signalsacollisionwhenthewheelsstall. ThePioneerissupportedby acomprehensive

softwarelibrary (calledSaphira)that managesthecommunicationwith therobotover

radio modem.

The lego-bot is a smallerplatform built from Legobuilding blocksand small

motorsandsensors.The lego-botusesa tank-liketrack locomotionsystemand has

infraredsensorsfor rangedetection. The lego-botis controlledvia a tether to the

robot from the personalcomputer. This tether is connectedto a data-acquisition

cardand the softwarespecificationfor the lego-botbehaviormust directly manage

the low-levelvoltagesand signalnecessaryto control the robot; there is very little

supportfor the actuatorsandsensors.

Although this is a significant simplification of the actual domain, it will be suf-

ficient to illustrate the various concepts in the dissertation. Clearly, the real mobile

robotics domain is significantly more complex than space allows us to present in

42

this dissertation.For example,wehavenot discussedwhetheror not the robot can

moveobjectsin its environment(with a gripper,for example).Nevertheless,wecan

illustrate someinterestingpropertiesof the domainevenwith this limited example.

3.3 Flight Guidance System (FGS)

The Flight Guidance System (FGS) example is loosely based on some of the FGS

systems built by Rockwell-Collins, but does not represent actual products of the

company. This FGS example is essentially the same one that has been introduced in

numerous other publications, including [81, 23].

The purpose of the FGS is to compare the measured state of the aircraft to the

desired state of the aircraft and then generate pitch and roll commands that attempt

to maintain the measured state as close as possible to the desired state. The FGS

can be partitioned into two pieces: (1) the continuous control laws that govern the

performance of the various control surfaces of the aircraft, and (2) the complicated

mode logic that defines how the FGS switches between these control laws.

To perform its job, the FGS must communicate with other systems on board the

aircraft as well as other components of the Flight Control System (FCS), of which it is

a part. The level zero context diagram for the FGS is shown in Figure 3.2. The FGS

accepts input from the Primary Flight Display (PFD), Flight Control Panel (FCP),

Flight Management System (FMS), Autopilot, Attitude Heading Reference System

(AHRS), and NAV radio. These systems provide the FGS with the information it

needs to compute which mode is active. The FGS in turn provides output to the

PFD, FMS, FCP, and Autopilot.

The aircraft operators (i.e., the crew) primarily interact with the FGS through

the use of the Flight Control Panel. This panel includes a number of buttons for

manually selecting and deselecting modes of the FGS; the buttons have lights by

43

I Control Surfaces I

Autopilot

Primay Flight

Display (PFD)

Attitude Heading
Reference

System (AHRS)

Flight Control

Panel (FCP)

Flight

Management

System (FMS)

NAV Radio

Figure 3.2: The FGS Level 0 context diagram

44

them that are lit with the modeis active. In addition, the FCP hasseveralknobs

with the pilot canuseto adjustsettingsthat havewiderrangeof values,suchasthe

selectedaltitude. The modesof the FGSarealsoannunciatedon the primary flight

displayusingshort text strings.

To makemattersmorecomplicated,thereareactuallytwo FGSsystemson the

aircraft. This redundancyis presentfor safetyreasonssothat if oneFGSshouldfail,

the otherFGScanbeusedto fly theaircraft. Neverthelessit shouldbeclearto even

the casualobserverthat only one FGS should be allowed to control the aircraft most

if not all of the time; otherwise, the two systems would potentially fight over control.

Therefore, the FGS systems need to be synchronized a good deal of the time. In

addition to two FGS systems, there are also two FMS, AHRS, Air Data, PDF, and

NAV radio systems. Usually, the two sets of systems are referred to using left and

right (e.g., FGS-left, FGS-right).

The control of the aircraft is divided into the lateral and vertical components.

Thus, at all times the FGS is required to select one and only one lateral mode to

control the horizontal axis of the aircraft and, similarly, one and only one vertical

mode to control the vertical axis of flight. One mode in each axis is designated at

the default mode, meaning that if no other modes on that axis are active then it will

become active.

3.4 Introduction to RSML -e

The majority of the work for the dissertation is independent of the particular choice of

formal modeling languages. Nevertheless, to present the examples for the dissertation

we have chosen to use the formal modeling language RSML -_ (Requirements State

Machine Language, without Events). In this section, we will provide an overview of

RSML -_ for those readers who would like a complete understanding of RSML -_ prior

45

to seeinganyexamples.In practice,most readerscouldprobablyskip this section

until Chapter 7 when a detailed proposal for changes to RSML -e is presented.

The first version of RSML -_, RSML, was developed as a requirements specification

language for process-control systems and is based on David Harel's Statecharts [36].

One of the main design goals of RSML was readability and understandability by

non-computer professionals such as end-users, engineers in the application domain,

managers, and representatives from regulatory agencies [66].

Initial projects with RSML were a success and the language was well-liked by

users, engineers, and computer scientists. The explicit event propagation mecha-

nism (as mentioned above), however, was a major source of errors and misconcep-

tions [65]. Therefore, the events were eliminated from RSML The resulting language,

RSML -_, has a fully formal semantics [118] and interfaces for the specification of

inter-component communication [40]. RSML -_ is a cousin to SpecTRM-RL described

in [65] in that they share the formal semantics but the syntax is substantially different.

RSML -_ is state-based specification language. An RSML -_ specification consists

of a collection of input variables, state variables, input interfaces, output interfaces,

functions, macros, and constants, which will be discussed below.

In RSML -_, the state of the model is the set of assignment histories of all variables

and interfaces. The state information is used to compute the values of a set of state

variables, similar to mode classes in SCR [43]. These state variables can be organized

in parallel or hierarchically to describe the current state of the system. Parallel state

variables are used to represent the inherently parallel or concurrent concepts in the

system being modeled. Hierarchical relationships allow child state variables to present

an elaboration of a particular parent state value. Hierarchical state variables allow

a specification designer to work at multiple levels of abstraction, and make models

simpler to understand.

46

Assignment relations in RSML -e determine the value of state variables. As dis-

cussed in Chapter 6, these relations can be organized as transitions or condition tables.

Condition tables describe under what condition a state variables assumes each of its

possible values. Transitions describe the condition under which a state variable is to

change value. A transition consists of a source value, a destination value, and a guard-

ing condition. A transition is taken (causing a state variable to change value) when

(1) the state variable value is equal to the source value, and (2) the guarding con-

dition evaluates to true. The two relation types are logically equivalent; mechanized

procedures exist to ensure that both functions are complete and consistent [39].

The state variable definition and assignment relation for a state variable in the

mobile robotics specification are given in Figure 3.3. The assignment relation is given

as a series of transitions from one value of the state variable to another. For example,

the first transition is from Startup to Cruise_Forward. On each transition, a condition

defines when that transition is taken. These conditions are simply predicate logic

statements over the various states and variables in the specification. The conditions

are expressed in disjunctive normal form using a notation called AND/OR tables [66].

The far-left column of the AND/OR table lists the logical phrases. Each of the other

columns is a conjunction of those phrases and contains the logical values of the

expressions. If one of the columns is true, then the table evaluates to true. A column

evaluates to true if all of its elements match the truth values of the associated columns.

An asterisk denotes "don't care." Although none of the tables given in Figure 3.3

have multiple columns, there will be examples of multiple column tables later in the

dissertation.

Input variables in the specification allow the analyst to record the the values

reported by the environment or various external sensors. They are assigned based on

the messages received by input interfaces (discussed briefly below).

47

Normal

Location: Reactive_Control

Transition: Startup.-_. Cruise_Forward

Condition:

TIME > 2 s T

..Failure INSTATE Ok T

Transition: Cruise_ Forward --_ Collision_Roe over

Condition:

CollisionDetectedMacro 0 = TRUE T

..Failure IN_STATE Ok T

Transition: Cruise_Forward -_ Avoid_Obstacle

Condition:

ObstacleDetectedMacroO = TRUE T

CollisionDetectcdMacroO = FALSE T

..Failure IN_STATE Ok T

Transition: Collision_Recover-*Cruise_Forward

Condition:

Prev_Step(..RoboURecover_Action IN_STATE Done)

..Failure IN_STATE Ok

Transition: Avoid_Obstacle -4. Cruise_Forward

Condition:

Prcv_Step(,.Robot_Avoid_Action IN_STATE Done)

..Failure INSTATE Ok

Transition: Avoid_Obstacle --_ CollisionRecover

Condition:

CollisionDctectcdMacroO = TRUE T

..Failure IN_STATE Ok T

Figure 3.3: The definition of the Normal state variable

48

Interfaces encapsulate the boundaries between the RSML -e model and the exter-

nal world. There should be a clear distinction between the inputs to a component,

the outputs from a component, and the internal state of the component. Every data

item entering and leaving a component is defined by the input and output variables

(state variables designated as outputs). The state machine can use both input and

output variables when defining the transitions between the states in the state ma-

chine. However, the input variables represent direct input to the component and

can only be set when receiving the information from the environment. The output

variables are presented to the environment through output interfaces.

The state variables are placed into a partial order based on data dependencies and

the hierarchical structure of the state machine. State variables are data-dependent

on any other specification entities that contained in the predicates in their condition

tables. A variable is also data dependent on its parent variable (if it has one). The

value of the state variable can be computed after the items on which it is data-

dependent have been computed. A single computation of all the variables in the

specification is referred to as a step.

RSML-%upports numerous expressions that allow for the specifier to express

the conditions (that define the data dependencies). Of course, RSML -_ allows for

standard arithmetic and relational expressions, as indicated in Figure 3.4. Also in

the figure, RSML -_ allows the specifier to reference the expected minimum, etc. that

was given in the specification.

RSML -_ supports a number of different expressions on the variables of the spec-

ification as well. Input variables in RSML -_ are assigned only by the interfaces;

therefore, there may be steps in which the input variable is not assigned. State vari-

ables, however, are assigned a value in every step. Figure 3.5 gives the expressions

that are currently available for state variables and input variables. As the figure

49

Expression Meaning

x ® y where (/) is one of +, -, Standard mathematical and relational expressions.

NOT x

--X

x EQ_ONE_OF {Yl, Y2,..-, Y,}

x::EXPECTED_MIN

x::EXPECTED_MAX

i::MIN_SEP

i::MAX_SEP

Standard logical NOT

Unary Minus

True if x is equal to any one of Yl, Y2, thru Yn ex-

pressions.

Returns the expected minimum of variable x.

Returns the expected maximum of variable x.

Returns the expected minimum separation for in-

terface i.

Returns the expected maximum separation for in-

terface i.

Figure 3.4: A summary of the standard mathematical and relational expressions

supported in RSML -_

5O

shows,currentlyRSML-e includesfacilitiesfor gettingthepreviousassignment,pre-

vious value,and valuein the previousstepfor input variablesand state variables.

Theseexpressionsarepowerful,but in our workwehavefoundthem morelimited

than what wewould like. Theseexpressionsareoneof the languagesfeaturesthat

will bechangedin the newversionof RSML-e proposedin this chapter.

RSML-e currentlysupportsa limited form of arraysandthe expressionsin Fig-

ure3.6 givethe syntaxfor theseexpressions.The readercanseethat currentlyit

is possibleto expressthe conceptsof "for all," "exists,"andothersin the language.

Again,this facility, whilepowerful,doesnot allowusto addfeatureswithout extend-

ing RSML-% This is a topic whichis addressedin the next severalsectionsof this

chapter.

Finally, to further increasethe readabilityof the specification,RSML-_ contains

manyothersyntacticconventions.Forexample,RSML-_ allowsexpressionsusedin

the predicatesto bedefinedasfunctions,andfamiliarandfrequentlyusedconditions

to bedefinedasmacros.Functions in RSML -_ are mathematical functions that are

used to abstract complex calculations. A macro is simply a named AND/OR table

that is used for frequently repeated conditions and is defined in a separate section of

the document.

3.5 Summary

This short chapter has presented an introduction to the case studies and notation

that will be used as the primary running examples for the rest of the dissertation. In

the following chapters, we will introduce more details about these examples as they

are used to illustrate the concepts in the dissertation.

The ASW will serve as the main example, being used in nearly every chapter.

The Mobile Robotics example will be used primarily to illustrate the product family

51

Expression Meaning

ASSIGNED(x)

CHANGED(x)

WHEN(x)

PREV_STEP(x)

PREV_VALUE(x,[y])

PREV_ASSIGN(x,[y])

TIME_CHANGED(x,[y])

TIME_ASSIGNED(x,[y])

True if variablex was assigned in this step. Valid

for input variables.

True if variable x has changed value in this step.

True if variable x has become TRUE in this step.

Returns the value that variable x had in the previ-

ous step.

Returns the value that variable x had before it took

on its current value, y allows for any number of val-

ues in the past. Primarily used with State variables

Returns the value the variable x had before it

was assigned. Primarily used for Input vari-

ables; for state variables, (PREV_STEP)(x) =

PREV_ASSIGN(x).

Returns the time that variable x changed value.

Primarily for State variables.

Returns the time that variable x was assigned. Pri-

marily for Input variables.

Figure 3.5: A summary of the previous value expressions supported in RSML -e

52

Expression Meaning

EXISTS(i, x, c)

FORALL(i, z, c)

COUNT(i, x, c)

FIRST_INDEX(i, x, c)

True if there exists an i such that c is true for the

variable x.

True if for all i c is true for variable x.

Equals the number of conditions c that were true

for variable x.

Equals the value of the first index i for which

c is true for variable x. Similarly, there is a

LAST_INDEX.

Figure 3.6: The array expressions currently supported in RSML -e

concepts presented in the next chapter. Finally, the FGS is given as an example of a

large, industrial-sized example on which these techniques were applied and validated.

Chapter 4

Product Family Structuring

This chapter discusses the foundational work the has been done in product family

structuring in the dissertation. This work was originally published in [106] and a more

expanded version is currently under review for a special edition of the Requirements

Engineering Journal [107].

Recall that a product family is a group of related programs that share so many

common features that it is useful to study the group of programs as a whole before

studying each individual program. Current approaches were discussed in Chapter 2.

In this chapter, we propose a structuring technique for product families that views

the families themselves in a multi-dimensional and hierarchical fashion. This helps us

to deal with existing problems, for example, near commonalities, and also, helps to

extend the approach to domains that, traditionally, would be difficult for product-line

engineering.

This chapter is organized as follows. First, we will present some background both

from other researcher's case examples and our own that indicate that product families

should be thought of in an n-dimensional and hierarchical way as well as what we

mean by those terms. Next, we present the structuring technique that allows the

product family to be organized n-dimensionally and hierarchically. Then, we devote

three sections to explaining how this technique is illustrated on each of the case

studies in the dissertation. Finally, we present a brief evaluation of the technique.

53

54

4.1 Extending Product Families

Wehavementionedin Chapter 2 that current approaches to product family engineer-

ing work well when the family contains a cohesive set of commonalities and simple

relationships among the variabilities. We hypothesize that it should be possible to

model and reason able product families with much more complex variability relation-

ships than is currently possible today. We believe that to make this possible, we

must first better understand the structures that are present in product families. This

section gives the background for the structures that we have observed (and have been

observed by others), namely n-dimensional and hierarchical product families.

4.1.1 n-Dimensional Product Families

A three dimensional object has many different projections into two dimensional space.

Furthermore, it can be difficult (or impossible) to determine the shape of the three

dimensional object from the projections into two dimensional space unless the pro-

jections are carefully chosen. When dealing in higher-dimensional space, the problem

is similar. We use the term n-dimensional to refer to the fact that most product fam-

ilies have many different possible organizations. This is because each organization is

really a projection of the multi-dimensional family into a lesser dimensional space.

This section provides justification for the fact that families are n-dimensional objects.

Attempts have been made to organize the product family requirements in a hierar-

chical fashion [69, 89, 57, 59]. Lutz noted in her attempt to organize the variabilities

into a tree that "there were several possible trees, with often no compelling reason to

select one possible tree over another" [69].

Brownsword and Clements present a shipboard command and control systems

family which contained 3000-5000 parameters of variation for each ship [15]. They

state that "the multitude of configuration parameters raises an issue which may well

55 I

warrant seriousattention." In addition, they presentthreedifferent views of the

architecturallayeringof the basesystemthat "do not conflictwith eachother; rather

theyprovidecomplementaryexplanationsof the sameideas."

Both theseexamples,aswellasourownexperience,illustrate the fact that often

a productfamily is multi-dimensional;therefore,a hierarchicaldecompositionis not

sufficientto capturethestructureof the domain.As anexample,mobilerobotsform

familiesalongthe dimensionsof hardwareplatform (commonbasicfeatures,but dif-

ferentmodesof locomotion,differentenvironmentalsensors,differentmanipulators,

etc.) andbehaviors(commonbasicbehaviors,but they mayalsorequirewall follow-

ing, obstacleavoidance,mapping,etc.). Wecall familiesthat decomposenaturally

alongsuchdimensionsn-dimensional product families.

n-Dimensionality is common in software systems. Thus, software design and im-

plementations have already attempted solutions to the problems associated with hav-

ing an n-dimensional space. In software implementation, researchers have proposed

aspect-oriented programming [54, 55, 80] a technique that allows the programmer to

separate out one dimension of the program from another and then use an automated

tool to "weave" the dimensions back together again. The approach was first tried

successfully on separating out the locking and synchronization code from the rest of

of the code base using a tool called AspectJ [56].

Our approach is similar in structure to the notation of design spaces [63] and

extended design spaces [7, 6]. Lane states that design spaces were created to allow

a system designer to describe and classify the various architectural alternatives for a

software system [63]. A dimension in a design space represents a single variation in

a system characteristic or a single design choice; thus, a design space dimension is

related to the product family concept of a variability.

Both aspect-oriented programming and design spaces are promising techniques

56

I FlyingCraf_FGS I

rl I"',..... 'Fixed Wing Helicopter ! Tilt-Rotor I

FGS FGS I FGS II
I

Figure 4.1: FGS product family covering flying craft

aimed at structuring the design and implementation of product lines. In addition,

there is much other work in structuring that has been done in the object oriented

community, and software architecture community that may be applicable to the re-

quirement phase. We clearly do not have the space to overview all of that work here.

Nevertheless, we want a technique that will work on the product family requirements.

The key, in our view, is to define a simple structuring mechanism which does not in-

troduce unnecessary design or implementation detail but which is still able to capture

the essence of the problem at hand.

4.1.2 Hierarchical Product Families

Suppose that a company wished to construct a flight guidance system (FGS) for

both fixed-wing aircraft and helicopters. Many of the tasks that the system has to

perform might be common across these two radically different aircraft: interaction

with other systems, deciding to level off at a particular altitude, mode transition logic

related to when it is legal to switch between the various operating modes. Therefore,

many requirements between these two systems will be the same, or very similar.

Nevertheless, the actual control of the aircraft is very different. Therefore, developing

a single set of commonalities and variabilities that span this entire domain is difficult.

Some would argue that this difficulty stems from the fact that the family is simply

57

too diverseto beconsidereda product line. However,it is clearthat thesesystems

sharemuchin common,whichwastheoriginal,andin ourviewthe mostimportant,

criterion for beinga family. Thus,weproposethe conceptof a hierarchical product

family.

Most previous attempts at product family structuring have focused on hierarchi-

cally grouping the variabilities while the commonalities remain the same for all family

members [69, 59]. Notable exceptions are Parnas [89] and Brownsword and Clements

who noted in their case study at CelciusTech [15] that sometimes product-lines exist

within the main product line. However, Parnas' work is rooted in design and coding

choices. Brownsword and Clements mention this phenomenon in passing and apply

it in a more limited way than what we advocate.

In our approach, additional commonalities which are unrelated to the commonal-

ities of the parent product family can be added in the sub-families. Of course, these

additional commonalities cannot conflict with those in the parent family. The hierar-

chical decomposition of the FGS family is shown in Figure 4.1. Thus, the helicopter

sub-family can have significantly different requirements than for fixed-wing aircraft,

yet share many things in common as well.

This will eventually effect the architecture and structure of the systems. For ex-

ample, the product of the domain engineering for the parent family, Flying Craft

FGS, might be a set of reusable components, whereas the product of domain engi-

neering for the children might be a reference architecture or generation facility. The

architectures for the fixed-wing aircraft and the helicopters could differ significantly

and use the components from the parent family in different ways.

By structuring the requirements in this way, we have avoided imposing restrictive

design constraints on the family members and instead focus on the structure of the

domain itself. Furthermore, should the company wish to start building FGS systems

58

for an entirelynewsetof aircraft, for example,tilt-rotor aircraft,this couldbedone

while reusingmanyaspectsof the FGSsystemsalreadyimplemented.This is also

shownin Figure4.1.

4.1.3 Constraints on the Solution

When starting to develop a structuring technique for product family requirements

that would be able to deal with n-dimensional and hierarchical product families, we

determined that any such structuring technique must:

• Be based on structures that are present in the domain itself, not on implemen-

tation or design concerns,

• Be simple, allowing the analysts to capture the structure of the domain without

introducing complex notations or concepts,

• Be amenable to the types of structures observed in product family analysis, and

• Produce a readable and usable artifact that facilitates reasoning about the

structure of the domain.

We chose to explore a structuring technique based on a set-theoretic view of

product families. The notion of sets proves surprisingly useful for thinking about the

structure of a software product line, yet is simple and based upon well understood

principles.

4.2 Structuring Technique

One way to view a product family is as a set, where the boundaries of the set are

determined by the commonalities, and the individual members of the set are distin-

guished by the values of their variabilities (Figure 4.2). As the figure demonstrates,

59

Boundries of the set are

determined by the Commonalities

_" _ = _ Individual family members are
/ A _ _ distinguished from one another by

L " @ ? the values Ofthe variabuities

v-- __ Some family members may
theoretically exist, but not be built

Figure 4.2: A simple product family

it is entirely possible that some members of the family may theoretically exist but

not yet be built (shown in gray). Furthermore, the family may be undefined at some

points within the boundaries due to, for example, illegal or nonsensical combinations

of variability values. We will use this view of a product family throughout this sec-

tion to demonstrate how current approaches to product-line engineering might be

expanded to a greater class of systems.

4.2.1 Representing Hierarchical Product Families

The most basic structure that can be represented with the set theoretic approach is

the subset. Figure 4.3 shows a product family, A, which has been divided into two

subsets, B and C. Furthermore, C has been further divided into subsets D and E.

This corresponds to a hierarchical decomposition of the family.

Consider a member of family E, el. The member el must have all the commonali-

ties defined for E as well as have some value for all the variabilities in E. Furthermore,

because E is a subset of C and A, el is also a member of families C and A. The general

definition for any family E which is a subset of another family C is as follows:

• E must include all of the commonalities in C.

6O

(a) (b)

Figure 4.3: Hierarchical decomposition and subset structure

• E must include all of the variabilities in C; however, E may restrict the range

or options available in the variabilities.

• E can add additional commonalities which are not present in C as long as the

additional commonalities do not conflict with the commonalities or variabilities

in C. These new commonalities might come from a refinement of variabilities

in C or might be completely unrelated.

• E can define additional variabilities which are not present in C as long as those

variabilities do not conflict with the above.

The first criterion is straightforward and necessary for the subset E to be com-

pletely contained within C. The second criterion defines the fact that E may wish

to refine or restrict the values of the variabilities of C. For example, in the mobile

robotics domain, a variability across the entire domain might be that the maximum

speed of the mobile robot can vary from one to five miles per hour. However, subsets

might define a lesser maximum speed depending on the hardware involved. It is pos-

sible for this refinement to result in an additional commonality, for example, suppose

that we have aircraft that can use either radio altimeters, barometric altimeters, or

GPS altimeters to measure altitude (a variability); then, a subfamily of these aircraft

61

(.) (b)

Figure 4.4: Abstract versus non-abstract families

could state as a commonality that all aircraft in that subfamily have only barometric

altimeters. Additional commonalities can also be added which are unrelated to the

parent family. For example, it is likely that the family of helicopters will need dif-

ferent commonalities than the family of fixed-wing aircraft. Finally, it is possible to

add additional variabilities.

The two cases of hierarchical decomposition are shown in Figure 4.4. Part (a) of

the figure demonstrates that the family R need not have any members that only exist

in R. In a sense, R is an abstract family, because any member of R must be either

a member of S or a member of T. This is similar to our FGS example from earlier,

where all family members are either helicopters or fixed-wing aircraft and it does not

make sense to talk about member which are only of the parent family. However, this

need not be the case, as Figure 4.4(b) demonstrates. In the mobile robotics domain

(see Section 4.5), we will have a basic robotic platform which will form the outer

family member. This outer family will not be abstract because there are some robots

which only conform to the minimum specification.

4.2.2 Intersection of Sub-Families

Another structure that can be represented using a set-theoretic approach is that of

set intersection. The ability to represent a set intersection distinguishes this approach

from the purely hierarchical structures which have been applied by others. This is

62

(a) (b)

Figure 4.5: Set intersection and non-hierarchical structure

shown in Figure 4.5.

Consider a member, ml, of M. By definition, ml is also a member of families K,

L, and J. Thus, ml must have all the commonalities of both K and L. In addition, M

is a subfamily of both families K and L (this is shown in the figure). The constraints

on any family M which is a subset of families K and L are as follows:

• M must include all the commonalities of both K and L.

• M must include all the variabilities of both K and L; however, it may restrict

those variabilities as above for subsets.

• M may introduce additional commonalities which are not present in either K

or L so long as those commonalities do not conflict with the commonalities or

variabilities in K or L.

• M may introduce additional variabilities which are not present in either K or L

so long as those variabilities do not conflict with the above.

These structures can be used to describe product families which are both n-

63

dimensional and hierarchical. Representing hierarchy is done primarily by using the

subset concept. Representing a dimension requires a bit more thought.

Dimensions represent alternate views of the product family based on some par-

ticular aspect of the commonalities and variabilities. For example, commonalities

and variabilities in the hardware platforms may be viewed as one dimension, and the

functionality of the family members viewed as another dimension. As mentioned pre-

viously, our notion of dimensions is similar to the notion of dimensions in extended

design spaces [6, 7]; however, we would advocate the choice of several primary dimen-

sions defined over cohesive aspects of the system and not make every variability a

dimension. Possible dimensions may be hardware platform, required behavior, fault

tolerance capabilities, etc. Some examples of dimensions are provided in Sections 4.3

and 4.5.

When a family or subfamily has been decomposed into several dimensions, we

expect to have to make a choice in each one of those dimensions in order to have a

valid family member. That is, we will have to instantiate the variabilities and select,

for example, both a hardware platform as well as the desired functions for a family

member.

When a family has been decomposed into several dimensions, we expect to have

to make a choice in each one of those dimensions in order to have a valid family

member.

4.2.3 Addressing Existing Issues

As we mentioned previously, current attempts at scoping the requirements for prod-

uct lines are thwarted by near-commonalities and complex dependencies among the

variability choices. Before we move on to the more detailed examples of the disserta-

tion, we will take a moment to give an overview of how our structuring technique of

64

Figure4.6: Setrepresentationof a near-commonality

n-dimensionalandhierarchicalproductlineswill helpto solvethe problemspresented

by near-commonalitiesand complexvariability dependencies.

Near-commonalities: A near-commonality(NC) is a commonalitywhich is true

for almostall (e.g.,all exceptone)memberof theproduct family. Lutz states that in

her experience near commonalities "frequently had to be modeled" [69]. One solution

for near commonalities is to model them as variabilities; however, this is, in some

sense, a misrepresentation of their basic properties. The solution that Lutz advises is

to model it as a constrained commonality of the form "If not member n then NC1."

However, a complex domain might contain numerous constrained commonalities with

conditions significantly more complex than the example just mentioned.

Figure 4.6 shows how a near-commonality is represented in our approach. The

near commonality, NC1, would simply be a property of family Q (and not of P). Thus,

the commonality naturally does not apply to n a member of only P but does apply

to any member of Q. This has several advantages. First, NC1 is now a pure com-

monality of Q. Second, if another member of the family is introduced with reduced

functionality [69] it need only be added as a member of P and Q may remain un-

touched. Finally, the subset structure can act as a guide in determining that certain

components in the eventual application engineering environment will not be needed

65

for n.

Dependencies among options: In [69], Lutz cites modeling dependencies among

options as one issues that must be addressed in product family engineering effort.

A dependency is typically a constraint among the variabilities, for example, if vari-

ability V1 has value B then variability V2 must have option C. Ardis recommends

treating this constraint as a commonality. However, in our experience, without some

additional structuring, the domain could become littered with such commonalities;

in addition, it may not be clear given a set of constraints whether or not a particular

variability is viable.

In an approach where the commonalities and variabilities are qualified as above,

the subfamily has no explicit description and its definition is essentially distributed

across all the commonalities and variabilities that it has. If the family has many such

dependencies with complex interactions, it will rapidly become difficult to visualize

the structure of the domain. Furthermore, this distribution of the domain's structure

to each variability and commonality makes changing the structure difficult and error

prone (in order to defined a sub-family, you must change every commonality and

variability that belongs to that sub-family).

In our approach, we can also represent constraints like these as commonalities.

However, we isolate them into logical groups by forming different subfamilies so that

their numbers do not become overwhelming. In the abstract example given above,

a subfamily would be defined where "V1 has option B" and "V2 has option C" are

both commonalities. This subfamily can be named and described in the requirements.

Furthermore, the relationship of one sub-family to another, i.e., the structure of the

domain, can be factored out making it easier to visualize and maintain in the future.

66

4.3 Flight Guidance System

In this section, we will discuss a small but illustrative subset of the FGS. Due to

concerns about proprietary information, the full FGS commonality analysis cannot

be given in this dissertation. Nevertheless, we can illustrate some key concepts with

the FGS that are in the public domain and can be published.

As discussed in Chapter 3, the FGS is responsible for deciding which lateral and

vertical modes of the aircraft are active. The lateral and vertical modes of the air-

craft determine a number of important properties about the aircraft's operation, for

example, whether the system is looking to find a navigation source or not, whether

the plane is ascending or descending to a selected or flight plan altitude, and so on.

The following commonalities describe the overall structure of the FGS.

C1 Every FGS has a lateral axis and a vertical axis, each of which has one or more

modes.

C2 On every FGS, along each axis, exactly one mode shall be active at one time.

C3 Every FGS designates one mode for each axis (lateral and vertical) that shall

be made active in the event that no other mode on that axis is active. This is

called the default mode for that axis.

The ways in which each FGS differs is primarily in the number and type of modes

that are present on the various aircraft. The engineers think of the modes as pluggable

features; however, in reality there are dependencies among the choices of which modes

the aircraft contains (e.g., every aircraft with mode x also has mode y) as well as

subfamilies of the aircraft that contain the same collection of modes (e.g., every

aircraft a in the sub-family A contains modes ml, m2, ... ran).

V1 The set of modes along each axis varies from aircraft to aircraft

67

Figure4.7: Exampleof sub-familiesof FGS

V2 The modewhich eachFGS designatesas the default variesfrom aircraft to

aircraft

V3 The FGSmayor maynot selectthe default modefor a particular axisupon

transferof flight guidancecomputations

Eachmode,for example,Roll Modecanbe viewedasdefininga sub-familyof

FGSsthat containthat mode.Thus,anFGSthat containedRoll mode,Pitch Mode,

and Headingmodewouldexist at the intersectionof thesethreesub-families.

CRoLI1Every Roll-subfamilyFGShasa Roll Mode

CRoll2EveryRoll-subfamilyFGSusesa roll reference

Caoll3The roll referenceis synchronizedwhenthe SYNCswitchis pressedwith the

Flight Directoron

Vaolll Theremayor maynot bea roll knobto adjust the roll reference.

VRolll.1The roll knobmayhavea detentangleof 0, 5, or 6 degrees.

Vaoll2The Roll/Headingtransitionanglecanassumevaluesof 5 or 6 degrees

68

In this way,eachmodecanbespecified.Figure4.7showsa simpleexampleof

the intersectionbetweenthe Roll and Headingmodes. Although this exampleis

purely hypothetical,wecanseefrom the figurethat most FGSssupport both Roll

andHeadingmodewhiletwoFCSsdonotsupportRollmode.Noticethat if onlyone

FCSdid not supportRollmodethis wouldbea near commonality; in our structuring

technique a near commonality is simply a special case of one sub-family having many

less members than another sub-family.

If two modes must occur together in every FGS, then they can be specified in

the same sub-family and that constraint can be noted as a commonality. This occurs

between several lateral and vertical modes that must synchronize with each other.

One example is the lateral and vertical go around modes.

CcA1E very GA-subfamily FGS has both a lateral and a vertical Go Around mode

CcA2T he lateral and vertical go around modes are always either both active or both

cleared

VCA1 The number and type of cockpit-located switched used to select go around

mode varies from aircraft to aircraft.

We have tried with the FGS to give a partial picture of what the complexity of

an industrial sized family might be like. We have discussed several modes of the

FGS and hypothesized how the interaction between the modes of the FGS might be

represented using our product family structuring approach. While it is unfortunate,

that the entire FGS cannot be included here, it is over 100 pages long and, therefore,

does not make a very illustrative example. Better illustrative examples are the ASW

and the Mobile Robots, which are discussed in the next two sections.

69

4.4 Altitude Switch (ASW)

Recall that the ASW family is a simple collection of devices that all perform some

action in response to changes in the altitude of the aircraft. The ASW is a much

simpler example than the FGS, but it illustrates many concepts about the product

family structuring approach. Furthermore, the ASW has the advantage that it may

be presented here in full, and not abbreviated as the FGS.

4.4.1 Commonalities and Variabilities for the ASW

The ASW family consists of systems on board the aircraft that use the values from

the various altimeters on board to make a choice among various options for actions

(one of which being to do nothing) and perform the chosen action. Therefore, some

high-level commonalities and variabilities are the following:

C1 All ASW systems will have a method of measuring the altitude of the aircraft

CI.1 The ASW system will use the information about the aircraft's altitude to

make a decision as to what action the ASW system shall perform

V1 The actions that the ASW takes in response to the altitude and the criteria to

perform those actions varies from aircraft to aircraft

At this point, we have defined the ASW to be essentially a family of systems that

process the altitude and then can perform some action based on the altitude that is

measured. Of course, the ASW exists on board and aircraft of some kind and that

aircraft will have a specified number and type of altimeters. This is noted in the

following two variabilities.

V2 The number and type of Altimeters, devices that measure altitude, on board

each aircraft may vary.

7O

V2.1 Somealtimetersprovideanumericmeasureof thealtitude(digital altime-

ters) whereassomealtimeterssimplyindicatewhetheror not the altitude

is aboveor belowa constantthresholdwhichis determinedwhenthe al-

timeter is installed(analogaltimeters).

Differentmanufacturersand/or differentsituationsmay dictate usingdifferent

algorithmsto processand thresholdthe altitude. This is noted in the following

variabilities.

V3 In familymemberswherethereismorethanonealtimeter,avarietyofsmooth-

ing and/or thresholdingalgorithmsmaybeusedon the valid altitudes [C2.1]

to determine the estimated value for the true altitude or estimated value of

whether or not the aircraft is truly above or below a certain threshold.

V3.1 Methods for choosing numeric altitude from several numeric sources will

be mean, median, smallest, largest

V3.2 Methods for choosing whether or not the aircraft is above or below a

certain threshold from a variety of altimeters which are either thresh-

olded or numeric are any one above/below, all above/below, and majority

above/below.

All the altimeters that are used on-board the aircraft are required to provide a

measure of the validity of the measure. Furthermore, if the ASW cannot get a valid

(or high enough precision) estimate of the altitude, it should declare that the system

has failed. Therefore, we would like to record that fact as a commonality for the

ASW family.

C2 All Altimeters will provide an indication of whether or not the supplied altitude

is valid or not

71

C2.1 An altitude which is denoted to be invalid shall not be used in a compu-

tation to determine the action to be performed by the ASW

C2.2 If no altitude can be determined (i.e., all altimeters report invalid alti-

tudes) for a specified period of time, then the ASW will declare that the

system has failed. This period of time shall be constant for each family

member (i.e., determined at specification time).

V4 The period of time that the altitude must be invalid before the ASW will declare

a failure may vary between 2 seconds and 10 seconds from family member to

family member.

In order for other devices on board the aircraft to know that the ASW has failed,

the ASW must provide some kind of failure indication. Usually, this is done by having

the system in question cease to strobe a watchdog output. If the watchdog is not

present, then other devices on board the aircraft know that that piece of the system

is no long functioning for some reason.

C3 All ASW systems will provide a failure indication to the environment.

C3.1 The indication that the ASW has failed will be the fact that the ASW

has not strobed a watchdog timer within a specified amount of time. This

period of time shall be a constant for each family member (i.e., known at

specification time).

V5 The time interval with which the ASW must strobe the watchdog timer varies

from aircraft to aircraft.

The ASW also accepts an inhibit and a reset signal. The inhibit signal should

prevent the ASW from performing any action other than declaring a failure. The

reset signal should return the ASW to its initial state.

72

C4 The ASWshall acceptan inhibit signal. While inhibited, the ASWshall not

attempt to performanyactionotherthan declaringa failure.

C5 The ASW shall excepta resetsignal. When the resetsignalis received,the

ASWshall return to its initial state.

The ASW hasseveraloperatingmodesin addition to the normalonedescribed

above.TheASWshouldwait until receivingat least5secondsof validaltitudebefore

performinganyaction.

C6 The ASW shall receive at least 5 seconds of valid altitude upon startup before

entering normal operation.

Finally, the ASW has a reduced functionality mode that is activated when two

episodes of invalid altitude lasting at least one second occur within a minute of each

other. In the reduced functionality mode, if the ASW detects that an action should be

performed, it shall wait for a minimum of two seconds before checking the conditions

for action again. If, after that minimum delay, the conditions for action are still

satisfied, then it will perform the action. However, if after six seconds the conditions

are not satisfied then the ASW will discard that action and go back to waiting for

the aircraft to cross the threshold.

C7 The ASW shall enter reduced functionality mode when two episodes of invalid

altitude lasting at least one second occur within one minute of each other

C7.1 While in reduced functionality mode, the ASW will delay performing any

action by a minimum delay period (2 seconds) at which time if the condi-

tions for action are still satisfied the ASW will perform the action

73

C7.2 While in reduced functionality mode, the ASW will not wait to perform

an action longer than the maximum delay time (6 seconds).

C7.3 The ASW shall exit the reduced functionality mode upon receipt of one

minute of valid altitude data

As defined, the ASW system currently allows for almost any action to be per-

formed as a result of the estimated altitude. A subfamily of the broad ASW family

would be the class of ASW devices responsible for turning on or off a particular Device

of Interest (DOI) on board the aircraft.

CDoI1T he ASW shall change the status (turn on or off) a Device of Interest (DOI)

when it crosses a certain threshold

VDoIIT he threshold for the ASW varies from 0 to 8024 feet from aircraft to aircraft

VDoI2W hether the ASW turns on/off the DOI when passing above/below the thresh-

old is a variability with nine possible choices (all combinations of do nothing,

turn on, and turn off in the above and below directions).

To deal with noisy data, or the aircraft flying near to the threshold altitude,

the DOI controlling ASW needs to have a certain hysteresis factor that is used to

determine how much the altitude of the plane must change in order to have the

DOI powered on or off again. The commonalities and variabilities that govern the

hysteresis function of the ASW are given below.

CDoI2T he ASW shall employ a hysteresis factor to ensure that when the aircraft is

flying at approximately the threshold altitude noisy data from the altimeters

or slight variations in altitude do not cause the ASW to turn on/off the DOI in

rapid succession

74

VDoI3T he hysteresis factor may vary from aircraft to aircraft between 50 ft and 500

ft.

VDoI4T he hysteresis factor may vary depending whether or not the aircraft is going

above or below the threshold.

CDoi3Both the hysteresis factor for going above and the hysteresis factor for going

below shall be a constant for each particular aircraft (i.e., known at specification

time).

Finally, the ASW will received updates from the DOI whenever the status of the

DOI changes. This is important to confirm whether or not the DOI is responding to

the commands issued by the ASW as well as fulfill the requirement denoted by the

final commonality.

CDoI4T he DOI shall give the ASW an indication of its status (on or off) whenever

that status changes

CDoI5W henever the ASW submits a command to the DOI, it shall wait for a specified

period of time for the status of the DOI to change to reflect the command. If

the status does not change within the specified period of time, then the ASW

shall declare a failure. The period of time will be a constant for each family

member.

VDolST he period of time that the ASW will wait after issuing a command to the

DOI before indicating a failure if the DOI does not change status shall vary

between 1 second and 5 seconds from DOI to DOI.

CDoI6T he ASW shall not attempt to power on the DOI if the DOI is already on or

attempt to power off the DOI if the DOI is already off.

75

As wehavepresentedthe commonalitiesand variabilitiesfor the ASW,someof

the structureof the ASW family is certainlyvisible. Nevertheless,the advantageof

separatingthe structure from the commonalitiesand variabilities is primarily that

the structuremay bevisualizedindependently.Somepossiblevisualizationsof the

ASW family structurearepresentedin the next section.

4.4.2 Structure and Members of the ASW Family

Even for a family as small and simple as the ASW, we can identify elements of

structure in the family. This identification is useful because it helps us to understand

the family and it is invaluable if, in the future, we would like to refactor the family

or incorporate the family as a part of a larger family. For example, we might like to

have one family that encompasses all the avionics devices built (not just the ASW).

Dimensions of the family are used as a visualization technique to separate out the

major choices of the family. Dividing a family into dimensions does not necessarily

mean partitioning all the commonalities and variabilities of the family. For the ASW,

we decided to concentrate on two primary dimensions when visualizing the structure:

(1) the choice of the altitude smoothing and/or thresholding algorithm and (2) the

major choice of functionality for the DOI. This decomposition is show in Figure 4.8.

Of course, there are more dimensions to the ASW family, for example, the various

types of altimeters might be considered a dimension.

Figure 4.8 depicts the various possible members of the ASW family. A notable

property of the figure is that there are no family members currently that use the

numeric altitude methods which we discussed in the commonalities and variabilities.

This is because we have only looked at a small sub-family of the possible behaviors

of the ASW family. In the future, we can envision adding all sorts of behaviors some

of which might use the numeric methods.

76

Majority Above Threshold

Majority Below Threshold

Any One Above Threshold

Any One Below Threshold

All Above Threshold

All Below Threshold

Numeric Least

Numeric Greatest

Numeric Median

Numeric Average

I t i i j t
i I I I I I I I i

', ', l l ' ' ' 'j i I g

---e-----e e e----_----e, e e--He - _,......
i i i i i i i i i i

.... ,----e _ _ ,----e _ _---, _......
i . . ! .i i " i : i ' : i

.... ,____# , _____,_.._ , __..., _......
i i i : , i i _ i '' ' " i ' : i :

.... -0- @".... • @.... -@-----e • _-----0- 4......

.... e-----e, ,e.... e -e-----e e e----e- _......

.... * _ e _---*----_ e e----* "......

.....i.....i.....T.....i.....i.....i.....i......i.....i.....i......

..... _..... -I...... 1...... I-..... {-..... 4 4 I-..... _..... -I......

..... • "1..... ",- r _ "1 n t" T _

.......... '.....T.....',.....,.....i.....i......:....._..... '......

Figure 4.8: The ASW family structure visualized in 2 dimensions

77

ASW ARItude

AJgottthm

D_menlk)n

L

°- _s_.,,- "_r'_I _°_"11" t _'"ll °"
Figure 4.9: The structure of the Altitude Dimension for the ASW

The reader might note that the dimension of the family that shows the choice

of smoothing or thresholding algorithms has some structure. That is, either the

algorithm will have a numeric result and be a smoothing algorithm or it will have

a boolean result and be a thresholding algorithm. This structure is visualized in

Figure 4.9.

Visualizing the structure of the family in this way can be useful in developing a

better understanding of the system. It may be that some commonalities should be

made into more general statements and moved to the top-level family. Alternatively,

you may discover that certain commonalities and variabilities may be closely tied to

the current way of doing things and, thus, likely to change. These commonalities and

variabilities may be isolated by placing them in a subfamily. This is a benefit of our

structuring technique.

The decision model represents a recording of which choices for all the possible

variabilities result in current family members. Obviously, the more complex the

structure of the family, the more complex the decision model will be.

78

Oneway that the decisionmodelcanbewritten downis by simplynoting which

choicesaremadefor eachfamily member.For the ASWfamily,wehavedonethat

belowfor severalASW familymembers.

• CS-123: This aircraft hasoneanalogand onedigital altimeter, turns on the

DOI whenat leastonealtimeteris below2000feet,will not turn the DOI back

onuntil going200ft abovethethreshold,hasa timeoutof 4 secondsfor altitude

stalenessand2 secondsfor the DOI.

• CS-134: This aircraft hasoneanalogandtwo digital altimeter,turns on the

DOI whenat leastonealtimeterisbelow2000feet,will not turn the DOI back

onuntil going200ft abovethethreshold,hasa timeoutof4 secondsfor altitude

stalenessand 2 secondsfor the DOI.

• DD-123: This aircraft hasoneanalogandonedigital altimeter,turns on the

DOI whenat leastonealtimeteris below2000feet,will not turn the DOI back

onuntil going250ft abovethethreshold,hasatimeoutof 2secondsfor altitude

stalenessand2 secondsfor theDOI.

Evenso,therearea numberof disadvantagesto listing the familymembercon-

figurationsin this way. First, it is difficult to tell whetherall requiredvariabilities

havebeengivenvalues.Second,it is difficult to seefamily membersthat havethe

samechoicesfor the variability values.A tabular format is oftenusedto represent

the decisionmodel.A tabulardecisionmodelfor the ASWfamily membersthat we

will considerin this methodologyis presentedin Figure4.10.

In the next section,wedescribethe mobileroboticsexample,whichbetter illus-

tratessomethe n-dimensionaland hierarchicalstructuringof the productfamilies.

79

Variability CS-123 CS-134 DD-123 DD-134 EF-155

of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3

Threshold Algo. Any Any Any Majority Majority

Invalid Alt. Failure 4 s 2 s 2 s 2 s 2 s

Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft

Go Above Action None None None None Turn Off

Go Below Action Turn On Turn On Turn On Turn On Turn On

Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft

Go Below Hyst. NA NA NA NA 200 ft

DOI timeout 2 s 2 s 2 s 2 s 2 s

Figure 4.10: A tabular representation of the ASW family decision model

4.5 Mobile Robotics

As mentioned in Chapter 3, the mobile robotics domain breaks down along two clear

dimensions: the hardware platform and the desired behavior. This section describes

in detail the commonalities and variabilities associated with these two dimensions

and then presents an overview of how the structuring technique works on the family

as a whole.

4.5.1 Hardware Dimension

Along the hardware dimension, we will consider a limited subset of the robot domain

containing three families of hardware. The actual domain is much more complex; it

includes many more types of sensors and different actuators, for example, a gripper

or robotic arm that can be used to pickup and move objects in the environment. We

8O

will considerthe followingthreeclassesof mobilerobotichardwarein this section.

1. A basicrobot with forwardand backwardmotion capabilities,a rangesensor

that givedistanceto the nearestobstacleandwhetheror not theobstacleis on

the right or on the left, anda forwardcollisiondetectionmechanism.

2. The basic robot with the ability to distinguishbetweenobstaclesthat are

straightaheadversusonly the right or left (i.e., bettergranularityin the esti-

mationof the obstacle'sposition).

3. The basicrobotwith the ability to distinguishthe colorof objectsin its envi-

ronment.

Basic platform: A basicfeatureof our robotic platformwill be that it canmove

aroundits environmentin somefashion.Thusa commonfeatureof the robotsis the

following:

CH 1.1 Each platform will provide a basic means of locomotion; it will have the ability

to turn a specified number of degrees from the initial heading, move forward,

move backward, and stop.

Nevertheless, the robotic platforms that we will consider differ greatly. Some

platforms are commercially built whereas others are built in-house, for example, out

of Lego building blocks and small motors. The following variabilities capture these

ideas:

VH1.3 The hardware comprising the robotic platform varies

VH1.3a The means of locomotion may vary (e.g. treads, wheels, legs, etc.)

VH1.3b The maximum speed of the robot varies.

81

VH1.3CThecontrolof locomotionvaries.The locomotionsystemmayprovide

simpleon/off valuesor realor digital valuedrepresentationof speedand

direction.

VH1.3dThe type of input expectedby the locomotionsystemvaries. It may

expectboolean,real,or digital valuesindicatingspeedanddirectionof the

platform.

VH1.3eThe sizeof the platformvaries.This will dictate the amountof room

neededto turn or avoidanobstacle.

In orderto avoidrunninginto obstaclesin the environment,the robot musthave

somekind of rangefinder.The platformmustalsobeableto tell whetheror not the

obstacleis onthe right or left sothat it cantakeactionsto avoidhitting theobstacle.

However,rangefindersvary significantlyin the typeand quality of informationthey

provide.For example,a sonarsensorprovidesa wide field of detectionbut is noisy

and inaccurate.A laserrangefinder, on the otherhand,will providedistancewith

highaccuracyandcandetectevensmallobstacles.

C H 1.2 All platforms will have at least one range finder that will provide input to the

system regarding the detection of an obstacle.

CH1.2a The range finder will provide an indication of the distance to the ob-

stacle.

CH 1.2b The range finder will provide an indication of the location (right or left)

of the obstacle in relation to the robot.

VH 1.1 The number and type of devices used for range finding is likely to vary. The

type of output generated by the range finder varies. Different range finders

82

mayprovideoutput asa real-valuedestimate,a digital estimate,or a boolean

indicationof obstacledetection.

Finally,becausethemobilerobotsoperatewith suchnoisyandinaccuratesensors

it is a certainty that they will occasionallyhavecollisions. Thus, platformsmust

havea methodof detectingcollisionssothat they canperformrecoveryactionsin

the behaviors.This couldbeimplementedin avarietyof differentways,for example,

buy installingbumperson the robot or by detectingthat the motorsthat drive the

wheelshavestalled.

CH1.3All platformswill haveat leastonemechanismfor detectingcollisions.

VH1.2The numberand type of collisionsensors(s)variesand the type of output

generatedby thecollisionsensorvaries.

Enhanced obstacle detection: Someplatformsmayhavemoreadvancedsensors

to detectobstacles.Forexample,arobotwithanarrayofsonarsensorsarrangedin an

arc canget muchmoreinformationabout potentialobstaclesthan merelywhether

they areon the right or on the left. For enhancedobstacledetection,the robotic

platformshouldbeableto detectwhetheror not it hasanobstaclein front of it in

additionto obstacleson the right and left.

CH2.1Platformswill havethe ability to distinguishwhetheran obstacleexistsdi-

rectly in front of themaswellaswhetherit is on the right or on theleft. See

related[CH1.2b]

VH2.1The granularity of obstaclepositiondetectedwill vary. For example,some

platformsmayprovideanenumeratedindicationof left, right, or front for the

obstaclewhereassomemayprovideanestimateddegreesto the obstacle.

83

This sensingcapabilityallowsthe robot to performmorecomplexbehaviors,for

example,maneuveringcloserto obstaclesor goingthroughdoors.

Environmental vision: Somerobotsmay be equippedwith a cameraor other

sensingdevicethat can givethem informationabout the color objectsin their en-

vironment. The type and quality of robotic visionsystemsvariesgreatly; however,

mostcandistinguishbetweenprimarycolors.

CH3.1Platformswill haveasensorcapableof determiningthecolorofobjectsin their

environment;for example,thesensorshouldbeableto distinguishbetweenred

objectsandblueobjects.

4.5.2 Behavioral Dimension

The behavioraldimensiondefineswhat the robot does. Of course, the behavior of

the robot is highly related to the hardware dimension, which constrains what the

robot can do and what information about the environment is available. Nevertheless,

to a large extent the behaviors can and should be reused across different hardware

platforms. The spectrum of behaviors possible, even with the limited hardware classes

that we have defined, is large. For the purposes of this report, we only have space

to discuss a few of them. Thus, along the behavioral dimension, we will consider the

following classes of behavior.

1. Random exploration, where the robot moves around its environment attempting

to avoid obstacles.

2. Random exploration with the ability to negotiate doors.

3. Random exploration with the ability to signal when it encounters objects of a

particular color.

84

Random exploration: RodneyBrooks [14] recommendsa layeredarchitecture

of robotic behaviorswith a simplereactivebehaviorbeingon the lowestleveland

higher-levelbehaviorsbuilt on top of this. When the robot encountersa problem,

for example,a collision,in a higher-levelbehavior,then the higher-levelbehavioris

suspendedby a lower-levelbehaviordesignedto correctthe problem.Our approach

to modelingthebehavioraldimensionissimilarin that ourbasicbehaviorisarandom

environmentalexplorationand morecomplexbehaviorsarebuilt on top of it. Note,

however,that wehavejust chosenBrooks'subsumptionarchitectureasan example

andthat wecouldhaveeasilychosenanothermethodof structuringthe behavioral

method. The real point is that the two dimensionsof the mobileroboticssystem

shouldbeableto bestructuredindependently.

Our basicbehavioris a randomexploration;whileexploring,the robot should

attempt to avoidobstaclesin the environment.

CBI.1 The robot shall attempt to avoid colliding with obstacles in its environment

using its sensors to detect obstacle(s) and changing its course or speed to avoid

the obstacle.

VB 1.1 Although detected by the robot's sensors, an object may or may not be consid-

ered an obstacle depending on the robot's mode of operation. See, for example,

[CB2.1a]

As mentioned previously, because of the robot's noisy and inaccurate sensors it is

likely that the robot will sometimes collide with an obstacle. When this occurs, the

robot should attempt to recover from the collision and continue exploration.

CB1.2 If the robot collides with an obstacle, it shall attempt to recover from the

collision.

85

V1.2 Successivecollisions(i.e., a collisionduring the recoveryfrom a previouscolli-

sion) may result in the robot shutting downall activity and declaringfailure.

The numbercollisionsin a chainthat the robot cantoleratevaries.

The randomexplorationbehaviorcoexistswith all the other possiblebehaviors

that we might define. In the absenceof any obstacleor collision, the robot will

potentially be performingsomeother functionswhich aredefinedby a subfamily.

However,this family is not abstract; thus, if no other behaviors are specified the

robot will move forward at full speed.

VB1.3 In the absence of an obstacle or collision, the behavior of the robot may be

further specified by a sub-family

CB1.3 In the absence of an obstacle, collision, or any other specified behavior, the

robot will move forward at maximum speed.

Door navigation: Maneuvering through a doorway is difficult for a mobile robot.

Often, obstacle detection sensors provide little information about the environment;

thus, doorways are often not seen as viable passageways. Furthermore, it is difficult

for the robot to find doorways in the first place given the noisy sensor data it receives.

CB2.1 The robot shall attempt to locate doors in its environment

CB2.1a Once the robot has found what it believes to be a door, it shall not consider

the sides of the door to be obstacles as the door is navigated. See [CBI.1],

[VBI.1].

VB2.1 The width of the door which can be navigated by the robot will vary according

to the width of the robotic platform and the quality of the on-board sensors.

86

Basic I_at_T_]

\/

Figure 4.11: The mobile robot family along the hardware dimension

Environmental interpretation: This behavior allows the robot to signal when

it encounters a particular object in the environment. That object or objects will be

identified by a particular color.

CB3.1 The robot will signal when it has detected an object in its environment of the

desired color.

VB3.1 The color of the object(s) to be detected will vary and may be configurable at

run time.

4.5.3 The Whole Family

The real mobile robotics domain is significantly more complex than space allows

us to present in this dissertation. For example, we have not discussed whether or

not the robot can move objects in its environment (with a gripper, for example).

Nevertheless, we can illustrate some interesting properties of the domain even with

this limited example.

There are several ways of visualizing the mobile robot product family. First, we

will examine the mobile robot family along the hardware dimension (Figure 4.11).

Notice that family members can fall into one of four different categories. The robot

87

o.

Both

Environmental
Vision --

Enhanced Obstacle
Detection

Basic Platform

........¢..........,,i+.........••

......... ¢•

Figure 4.12: A possible 2-dimensional view of the robot product-line

may have only the basic capability, in which case it exists only for the family Basic

Platform. This is the case for LegoBot The robot may have either one or the other of

the additional hardware capabilities specified by the Enhanced Obstacle Detection or

Environmental Vision. Finally, the robot may posses both the additional capabilities

of Enhanced Obstacle Detection and Environmental Vision; therefore, it lies in the

intersection of those two subfamilies. This is only one slice of the system, however,

and if we were to look at the mobile robot family along the behavioral dimension

we would see a similar picture. A somewhat more effective means of viewing 2-

dimensional product family is in a 2-dimensional grid as shown in Figure 4.12.

The representation is symmetrical in this case because of the one-to-one mapping

between behavioral subfamilies and hardware subfamilies. The full mobile robotic do-

main, however, is not symmetrical. In the full domain, behaviors may be composed

88

and combinedto form a compositebehavior.Forexample,wemight envisiona be-

haviorwhichincludesthedoornavigation,combinedwith a mappingfunction,awall

followingbehavior,and a high-levelplanner.The mappingand high-levelplanning

behaviorswill needto communicatewith the lowerlevel randomexploration,door

navigation,and wall followingto direct therobot towardshigh-levelgoals.However,

if therobot collideswith anobstacle,then thelowerlevelbehaviorwill takeoverand

recoverfrom the collision.Thusthestructuringof the behavioraldimensionis much

morecomplexand resemblesBrooks'subsumptivearchitecture[14]. Furthermore,

definingthe behaviorsindependentof the hardwareallowsus to focuson only the

behaviorsandtheir interactions(a significantproblemin anof itself).

Thesecombinationsof behaviorsmight requireseveraldifferentsetsin thehard-

waredomain,whichwill havesub-familiesthat define,for example,robotswith grip-

pers, robotswith bumpers,robotsthat haveradiocommunicationsdevices,and so

forth. Thus, it is generallynot the casein the full domainthat a behaviorwill re-

quireexactlyonesubsetin thehardwaredimensionor that thebehaviorandhardware

dimensionshavethe samestructure.By definingthe intersectionof the hardwaredi-

mensionwith the behavioraldimension,wedefinewhichfamily membersareviable

andwhicharenot.

The divisionof the systeminto behavioralandhardwaredimensionsis a classical

onewhich;however,thesearenot the only two dimensionspossible.For instance,

performance,for example,battery life, mightbemodeledasa separatedimensionof

thesystem.

4.6 Evaluation and Summary

The structuring technique presented results in the creation of more families within

the domain than with a traditional approach. However, these sub-families are more

89

cohesiveandsimplerthanwouldbethecaseif wecreatedjust onetop level-family.We

believethat thisprovidesseveralbenefits.First, thetop-levelfamily cannowbemuch

broaderthan waspreviouslypossible.Second,the overallfamily can be expanded

andcontractedby addingandsubtractingsub-families.Finally, thesetechniqueswill

allowa family to bemoreeasilyrefactoredasthe definitionof thefamily evolvesover

time.

The ability to drawa largerproduct familywasanessentialrequirementfor the

structuringtechnique.Thisgrowsout ofourownexperienceswith mobilerobotics[22,

106],wherewehaddifficulty in applyingtheproductfamilyapproach.This difficulty

stemsfrom the fact that the mobileroboticsdomainis both n-dimensional and hier-

archical.

The mobile robotics domain breaks down along two clear dimensions: the hard-

ware platform and the desired behavior. Each hardware platform conforms to a basic

specification: it can move forward and backward, turn left and right, sense whether

or not an object is in front of it. The hardware platform may also be equipped with a

variety of sensors and actuators that give it additional capabilities; and, the various

sensors differ greatly in the speed and accuracy with which they provide information.

Thus, on the hardware side, there are many different configurations that must be

modeled.

On the behavior side, we can imagine that a basic behavior might be a random

exploration where the primary goal of the robot is collision avoidance and recovery.

More complex behaviors can be added, for example, wall following, going through

doors, and finding particular objects. Furthermore, those behaviors may be com-

posed and combined to form a composite behavior. We might envision a behavior

which includes the door navigation, a wall following behavior, and a high-level plan-

ner. The high-level planning behavior needs to communicate with the random ex-

9O

ploration,door navigation,andwall followingto direct the robot towardshigh-level

goals. However,if the robot collideswith an obstacle,then the lower levelbehav-

ior will takeoverand recoverfrom the collision. Thusstructureof the behavioral

dimensionismuchdifferentfromthehardwaredimensionandresemblesBrooks'sub-

sumptivearchitecture[14].

Certainly,adomainsuchasmobileroboticswhichabsolutelyrequiresn-dimensional

andhierarchicalproductfamilieswill necessarilybemorecomplexthanadomainthat

doesnot requirethesetechniques.Nevertheless,anydomaincanbenefitfrom reuse

of the artifactsat the top of the familyhierarchyanda moretraditional cost-benefit

will existtowardsthe leavesof thefamily (alongeachparticulardimension).Evenin

a domainsuchasthe ASWor theFGS,the requirementsbenefitfrom the ability to

clearlyseparatetheconcernsof the variousmodesanddenoteconstraintsspecifically

to whentwo modesoccurtogether.

Another benefitof the techniqueis the ability to expandandcontractthefamily

asnecessary.For example,supposethat wediscoverthat wehavea newkind of

DOI which hasthreestatesinsteadof two (e.g.,Off, Low, andHigh). Clearly,our

commonalitiesandvariabilitiesareorientedtowardsa DOI that is eitherOn or Off;

nevertheless,this newDOI will sharemuchin commonwith the two state DOI. To

accommodatethis change,commonality[CDO_I] andvariability [VDOI2] will need

to beupdatedto reflectthe largerDOI family. Then,wemaydefinetwo subfamilies

of the largerDOI family - onefor two-stateDOIandonefor three-stateDOI;or, we

maychooseto modelan n-state DOI. In any event, the vast majority of the ASW

family specification will be isolated by the structure that we have chosen for the

family.

This ability to redraw and rework pieces of the commonality analysis while be-

ing confident of not affecting other parts of it is essential because it allows a more

91

incrementaldevelopmentof product-linesthan is facilitated by currentapproaches.

Furthermore,it facilitates family refactoring; that is, the family can be redefined

more easily as the product line evolves over time. Thus, this structuring technique

has much potential to increase the usefulness of the product family approach.

One of the barriers to traditional product family approaches is that the whole

organization must change to accommodate product-line oriented development. Many

resources are required to develop the domain engineering support for the entire prod-

uct line while at the same time continuing to produce products for existing customers.

Our approach allows an organization to start out with a high-level product family

and reuse just a few key pieces between the major product areas. As the payoff from

this reuse makes more organizations resources available, the organization can then

afford to make the family more rich (by refactoring and/or adding sub-families) and

thus achieving more payoff from the effort.

Of course, these benefits do not come for free. The broader and more flexible

view of product families allowed by our techniques will result in families which are

more complex than traditional families. In addition, because of this broader view,

it may be more difficult to determine what constitutes a viable family under our

approach. Almost anything is related in some fashion or other and it may be difficult

for organizations to decide when to define an encompassing family for a particular

group of subfamilies. Nevertheless, we feel that these techniques hold promise and

may serve to advance the frontiers of product-line engineering.

The cost-benefit analysis of our product-line engineering approach is more difficult

because one must not only consider the cost of developing domain engineering support

of the particular sub-family in which the member resides, but also all sub-families

above that one in the product family hierarchy. Suppose that we wanted to build

a family of FGS systems for both fixed-wing aircraft and helicopters. The cost-

92

Cost
#1:112 Cost of Flying Craft FGS
#2: Cost of Fixed-Wing FGS
#3: Cost of Helicopter FGS

/
/

/
/

/
/

/
/

#3

#1

/

/
/

/

/
/

/

/

Payoff Point for
Helicopter FGS

Payoff Point for
Fixed-Wing FGS

Family Members

Figure 4.13: Cost-benefit of the FGS Family

93

benefitanalysisfor this family is shownin Figure4.13.To build either a fixed-wing

aircraftor a helicopter,wemusthavebuilt theassetsin the Flying Craft FGSfamily;

therefore,wecanamortizethecostof theFlying Craft FGSoverboth the fixed-wing

and helicopterfamilies.This is the cost#1 in the figure. Next, if wewant to build

the assetsfor the fixed wing family, we must spendsomeadditionalamount over

an abovethe sharedcost for the Flying Craft FGS.This is noted by the cost #2

in the figure. Onceweknow what both of thesecostsare,we candeterminehow

many fixed-wingFGSsystemswemust build in order for the family development

effort to bejustified. However,the costof building the helicopterassetsmaywell be

different from the cost of building the fixed-wind assets (this is cost #3 on the figure).

Therefore, if the helicopter assets are more expensive to construct we will have to

build more of the helicopter FGS members to justify the costs. As the structure

of the family becomes more complex, for example, through the creation of a deeper

hierarchies and/or the use of multiple dimensions with constraints between them, this

relationship will become more complex. This dissertation does not address how to

perform a cost-benefit analysis in the most complex scenarios, but it is a topic that

should be addressed in the future.

In this chapter, we have taken a look at the structures that are present in many

product families and given our own approach to representing that structure in a usable

way, illustrated with examples from the ASW, FGS, and mobile robotics families.

This chapter provided one of the major building blocks for the methodology. The

next chapter will discuss the other major building block for the methodology, the

work that was done on specification-based prototyping. These two building blocks

will be tied together in Chapter 6.

Chapter 5

Methodology Foundations

The goal of this chapter is to provide a framework for the methodology that is de-

scribed in Chapter 6. Much of the work presented in here is based on our work with

specification-based prototyping [109, 110, 108] and the NIMBUS environment [105,

104]. This chapter is also based on Miller's extended four-variable model [83], which

was developed in collaboration with the work at the University of Minnesota.

As discussed in Chapter 2, the system requirements should always be expressed

in terms of the physical process. These requirements are determined by the need

to change the world in which the system operates and are represented by the REQ

relation. The IN and OUT relations are determined by the sensors and actuators used

in the system. For example, to measure the altitude we may use a radio altimeter

providing the measured altitude as an integer value. Similarly, to turn on a device,

a certain code may have to be transmitted over a serial line. Armed with the REQ,

IN, and OUT relations we can derive the SOFT relation.

All of these relations are likely to change over the lifetime of the controller. Fur-

thermore, the sensors and actuators are likely to change independently of the require-

ments as new hardware becomes available or the software is used in subtly different

operating environments. If any one of the REQ, IN, or OUT relations changes, the

SOFT relation must be modified. What is needed is to provide a smooth transition

from system requirements (REQ) to software requirements (SOFT) and to isolate the

impact of requirements, sensor, and actuator changes.

94

95

The questionis, how shall we do this and how shall we structure the SOFT

relation?Our resultsin this areaarepresentedin the nextsection,wherewediscuss

howto structurethe SOFTrelation,andin the sectionafter that, wherewediscuss

the overallprocessto beusedin refiningthe requirements.Finally, weexplainhow

formal languagesand tools greatly benefitthis systemmodeland describebriefly

describeresultsthat wehaveachievedwith the researchtoolsetat the Universityof

Minnesota.

5.1 The FORMpc8 System Model

ThissectionintroducestheFORMpcssystemmodel,whichisessentiallyanextended

versionof the four variablemodelthat waspresentedin Chapter2.

Thereare severalvariationsof the four-variablemodel that onecould imagine

mightbeusefulonoccasion.Forexample,it maybehelpfulto layertheIN andOUT

relationsinto levelsmuchlike theISOReferenceModelfor communicationprotocols.

Anothervariation is to "glue" the controlledvariablesof oneor moremodelsto the

monitoredvariablesof anothermodelto createa largersystemspecificationor to

split a largemodelup into severalsmallermodels(althoughcaremustbe takennot

to fall into the trap of introducingimplementationbias).

Thetraditional fourvariablemodelleavesthesoftwaredeveloperwith thequestion

of how to structurean implementationof SOFT, i.e., how to designthe software.

Oneappealingapproachis to "stretch" the SOFT into the relationsIN', REQ', and

OUT' asshownin Figure 5.1 [83]. IN' takesthe measuredinput and reconstructs

anestimateof thephysicalquantitiesin MON. TheOUT' relationmapsthe internal

representationof the controlledvariablesto the output neededfor the actuatorsto

manipulatethe actual controlledvariables.Given the IN' and OUT' relations,the

REQ' relationwill nowbeessentiallyisomorphicto the REQ relationand, thus, be

96

NAT

REQ

REQ'

IN

IN'

INPUT _

SOFT

OUT

OUr

I__ OUTPUT

Figure 5.1: The FORMpcs system model adapted from [83, 109]

robust in the face of likely changes to the IN and OUT relations (sensor and actuator

changes). This conceptual view creates a virtual image of the MON and the CON

variables in software, an approach often advocated in object-oriented design methods.

Decomposing the software in this way has several benefits. First, if MON and

CON are chosen correctly, the portion of the software specified by IN' will change

only as the input hardware changes. Likewise, the portion of the software specified

by OUT' will change only as the output hardware changes. In a similar fashion, the

portion of the software specified by REQ' will be isolated from hardware changes

and will change only in response to changes in REQ, the system requirements. Since

customer driven changes and hardware driven changes arise for different reasons, this

helps to make the software more robust in the face of change. It also greatly simplifies

tracing the system requirements to the software requirements.

97

Of course,it is important to note that MON' and CON' are not the sameas

the systemlevelvariablesrepresentedby MON and CON. This is highlightedin

the figure. Smalldifferencesin valueareintroducedboth by the hardwareand the

software.Differencesin timing are introducedwhensensingand setting the input

and output variables. For example,the valueof an aircraft's altitude createdin

softwareis alwaysgoingto lag behindanddiffer somewhatfrom the aircraft's true

altitude. In safety-criticalapplications,the existenceof thesedifferencesmust be

takeninto account.However,if they arewellwithin the tolerancesof the system,the

paradigmof Figure5.1providesa naturalconceptualmodelrelating the systemand

the softwarerequirements.This directly addressesthe issueof integratingsystems

and softwareengineering.

Nevertheless,evenarmedwith this techniqueforstructuringtheSOFTrelation,it

is not clearhowexactlyto proceed.This topic of howthe refinementprocessshould

beorganizedisdiscussedin the next section.

5.2 The FORMpcs Process Framework

The previoussectiondescribedanoverallstructurefor the SOFT relation.This sec-

tion describesaprocessfor derivingthe SOFTrelationgiventhe REQ relation.The

specificationstartsasa high-levelmodelof the system requirements (i.e., the REQ

relation). This model is is then iteratively refined, adding more detail as the system

becomes better understood. During each iteration, if a formal, executable specifica-

tion language is used, the specification is executable and can therefore be used as the

prototype of the proposed system. Eventually, the system requirements will be well-

defined and the system engineer must allocate requirements to particular hardware

and software components within the system. At that point, the system requirements

can be refined to the software requirements by adding descriptions pertaining to the

98

MON--REQ'-_ CON

MON' _REQ'-II_ CON'

IN' OUT'

MON & CON &

INPUT OUTPUT

MON' _REQ'-_ CON'

INPUT

OUT"

1
OUTPUT

Figure 5.2: Refining REQ to SOFT

actual hardware with which the software must interact.

From the start of the modeling effort, we know that we will not be able to directly

access the monitored and controlled variables--we must use sensors and actuators.

At this early stage, we may not know exactly what hardware will be used for sensors

and actuators; but, we do know that we must use something and we may as well

prepare for it. By simply encapsulating the monitored and controlled variables we

can get a model that is essentially isomorphic to the requirements model; the only

difference is that this model is more suited for the refinement steps that will follow

as the surrounding system is completed.

The method of this encapsulation differs depending on the language used. If the

language does not have a modularity construct, then extra variables or functions can

be introduced in the specification to isolate the REQ' behavior from the hardware

specification. If the language does have a modularity construct, the specifier may

choose to define a module that computes the REQ' relation and then the module's

interface naturally provides the encapsulation.

As the hardware components of the system are defined (either developed in house

99

or procured),theIN andOUT relationscanbe rigorouslyspecified.Figure5.2shows

a high-levelviewof the refinementprocess.At the far left of the figure,westart the

processwith just anotionof theREQ'relationandevaluateREQ' with themonitored

and controlled variables(we basicallyassumethat the sensorsand actuatorsare

perfect-thereareno delaysor noise). Next, wemoveinto an intermediatestageas

weaddmoreand moredetail to the IN' and OUT' relations.During this stage,the

specificationsfor somesensorsandactuatorsmightbecompletelyfinishedwhilethe

specificationsof othersareunderdevelopment;this is the reasonthat both MON

andINPUT arenotedasthesourcesfor the IN' relation (andsimilarly for the OUT'

relation).Finally,wewill arriveat acompletespecificationof both theIN' andOUT'

relations,shownat the far right of the figure.

Wehaveshownin the abstracthowthe SOFTrelationshouldbestructuredand

our conceptionof the processthat shouldbe usedto refinethe REQ relation to the

SOFTrelation. In thenextsections,weillustratethis approachby applyingit to the

ASWandthe MobileRoboticsexamples.

5.2.1 The ASW Example

Thissectiondescribestheoverallprocessof howtheASWspecificationwasdeveloped,

usingexamplestakenfrom the specification.In the next chapter,wego into more

detail aboutexactlyhowthis wasdoneaswediscussthe methodologyitself.

We identifiedthe aircraft altitude asonemonitoredvariableand the commands

that the ASW sendsto the deviceof interestas a controlledvariable. Both are

clearlyconceptsin the physicalworld, and thus suitablecandidatesas monitored

and controlledvariablesfor the requirementsmodel. In our case,usinga function,

MeasuredAltitude(), instead of the monitored variable Altitude will shield the specifi-

cation from possible changes in how the altitude measure is delivered to the software.

i00

Figure 5.3: The true altitude is mapped to three software inputs.

By performing this encapsulation for all monitored and controlled variables we refine

REQ to REQ', a mapping from estimates of the monitored variables to an internal

representation of the controlled variables.

The IN and OUT models represent our assumptions about how the sensors and

actuators operate. In this version of the altitude switch we will use one analog and

two digital altimeters. Thus, we will map the true altitude in the physical world to

three software inputs (Figure 5.3).

In the case of the digital altimeter, the altitude will be reported over an ARINC-

429 low speed bus as a signed floating point value that represents the altitude as

a fraction of 8,192 ft. If we ignore inaccuracies introduced in the altitude measure

and problems caused by the limited resolution of the ARINC-429 word, the transfer

function for the digital altitude measures can be defined as

Altitude
DigitalAlt -

8192

The analog altimeter operates in a completely different way. Due to considerations

of cost and simplicity of construction, the analog altimeter does not provide an actual

altitude value, only a Boolean indication if the measured altitude is above or below

a hardwired threshold (defined to be the same as the one required in the altitude

switch). Assuming again an ideal measure of the true altitude, the transfer function

for the analog altimeter could be modeled as

101

f

] Above if Altitude > Threshold
AnalogAlt

Below if Altitude <_ Threshold

In addition, all three altimeters provide an indication regarding the quality of the

altitude measures.

With the information about the sensor (IN) and actuator (OUT) relations, we can

start refining the REQ' relation towards SOFT. In our case we must model, among

other things, the three sources of altitude information and fuse them to one estimate

whether we are above or below the threshold altitude. To achieve this, we refine the

IN' relation in our model.

In the refined model, internal models of the perceived state of the sensors have

been included in the state machine as a representation of the IN' relation for Altitude.

Instead of the idealistic true altitude used when evaluating REQ, the specification

now takes two digital altitude measures and one analog estimate of the altitude as

input. This Below Threshold 0 macro is shown in Figure 5.4. Note that the figure uses

a simple RSML -e construct for expressing Boolean conditions in disjunctive normal

form. A much more detailed introduction to RSML -e is provided later in Chapter 7.

Thanks to the structuring of the SOFT relation, this refinement could be done with

minimal changes to the REQ' relation As the components in the environment are

developed, this process will be repeated for all inputs and outputs until a detailed

definition of the SOFT relation is derived.

5.2.2 The Mobile Robotics Example

The mobile robotics domain's dimensions coincide with the breakdown of the SOFT

relation into IN', OUT', and REQ' - those sections of the relation dealing with the

platform are confined to IN' and OUT' while those sections dealing with the behavior

102

BelowThreshold

PIwsmeten: NONE

Condition:

Measured DigitalAIt(DigitalA It1) <= AltitudeThrtshold T * *

DigitalAItimtter I_oko T * "

MeasutcdDigitalAlt(DigitalA R2) <= AltitudeThreshold * T '

DigitalAItimcter2 Ok0 * T *

AnalogAItitudcMeasure0 = Below * * T

AnalogAItirneter_OkO * * T

Figure 5.4: Macro modified to handle the tree inputs instead of the true altitude as

it did in the REQ model.

are primarily confined to REQ. Therefore, in the mobile robotics domain we will have

a number of different REQ relations, one for each behavior, and an IN' and OUT'

relations, one set per platform. In this section we will consider only the random

exploration behavior and concentrate on the differences between the platforms.

We begin with a short discussion of the REQ relation. To capture the desired

behavior we must discover monitored and controlled variables in the environment

that will allow us to build the formal model. In addition, while evaluating candidates

for monitored and controlled variables we must keep in mind that the REQ model

shall apply to all members of the product family.

We identified a robot's speed and heading as controlled variables. Speed ranges from

0 to 100 and can be mapped into a speed for each family member using the maximum

speed of the particular robot. Heading ranges from -180 to 180 and indicates the

number of degrees that the robot may have to turn to avoid an obstacle.

103

!Reactive Control

Avoid_Obstacle

Figure 5.5: Mobile Robotics platform Random Exploration REQ relation

We identified Collision, Range, and ObstacleOrientation as monitored variables.

The Collision variable is simply a Boolean value which is true when there is a collision

and false otherwise. The Range variable is the distance from the robot to the nearest

obstacle and the ObstacleOrientation denotes whether the obstacle is on the right

or left of the robot. These variables clearly reside in the system domain and are

sufficient to model the desired behavior. If the monitored and controlled variables

are chosen appropriately, the specification of the REQ relation will be focused on the

issues which are central to the requirements on the system.

Figure 5.5 shows that the REQ relation definition at the top level is split between

two state variables: Failure and Normal. The Failure state variable encapsulates the

104

Normal

Location: Reactive_Control

Transition: Startup---_ Cruise_Forward

Condition:

TIME > 2 s T

•,Failure IN_STATE Ok T

Transition: Cruise_Forward --._ Collision_Recover

Condition:

CollisionDetectedMacro 0 = TRUE T

,,Failure IN_STATE Ok T

Trangltloo: Cruise_Forward ---_ Avoid_Obstacle

Condition:

ObstacleDetectedMacro 0 = TRUE T

CollisionDetactedMacro 0 = FALSE T

.,Failure IN_STATE Ok T

Trandtlon: Collision_Recover -"_Cruise_Forward

Condition:

Prev_Step(,.Robol_Recover_Action IN_STATE Done)

..Failure INSTATE Ok

Transition: Avoid_Obstacle -'*" Cruise_Forward

Condition:

Prev_Step(..RobotAvoid_Aclion IN_STATE Done)

.,Failure IN_STATE Ok

Transition: Avoid_Obstacle _ Collision_Recover

Condition:

CollisionDetecledMacru 0 = TRUE T

• ,Failure IN_STATE Ok T

Figure 5.6: The definition of the Normal state variable

105

failureconditionsof the REQ relation,whereasthe Normal state variable describes

the how the robot transitions between the various high-level behaviors discussed at

the introduction to this section (obstacle avoidance, collision recovery, etc.). For the

remainder of our discussion of REQ, we will focus on the Normal state variable where

this aspect of the requirements is captured (Figure 5.6).

The Normal variable defaults to the Startup value. This allows the specification to

perform various initialization tasks and checks before the main behavior takes over.

The first transition in Figure 5.6 states that after two seconds, the specification will

enter the Cruise_Forward state.

The next two transitions govern the way that the Normal state variable can change

from the Cruise_Forward value. If a collision is detected, then the state variable

changes to the Collision_Recover state. If an obstacle is detected, then the specifi-

cation will enter the Avoid_Obstacle state. Otherwise, the value of the Normal state

variable will remain unchanged.

The Cruise_Forward behavior becomes active after the avoidance/recovery action

has been completed. We accomplished this in the mobile robotics specification by

providing a "done" state in each of the sub-behaviors. This is illustrated by the fifth

and sixth transitions in Figure 5.6.

Finally, it is also possible to transition from Avoid_Obstacle directly to Colli-

sion_Recover if, for example, the robot hits an undetected obstacle; this case is covered

by the final transition in Figure 5.6.

Given this definition of the REQ relation high-level behaviors, the definitions of

the sub-behaviors can be constructed in a similar and straightforward manner. For

example, if the robot hits an obstacle, it will attempt to back up, turn, and then

proceed forward again. This behavior is specified in the Robot_Recover_Action state

variable by having the variable cycle though the values Backward, Turn, and finally

106

Done.

When refining the specification from REQ to SOFT, we select the sensors and

actuators that will supply the software with information about the environment, that

is, we must select the hardware and define the IN and OUT relations for each platform.

Consequently, we will also need to define the IN' and OUT' for each platform.

5.2.3 Process Summary

The structuring techniques above can be applied to virtually any specification lan-

guage. Nevertheless, to realize the full potential of a prototyping-style development

process, it is necessary to allow the analyst to fully evaluate the specification after

each iteration (i.e., perform a risk assessment). Therefore, a language which has a

formal semantics and can be analyzed and executed during each iteration will have

significant benefits over others that do not. This process, called specification-based

prototyping, is discussed in detail in the next section.

5.3 Languages and Tools to Support FORMpcs

The capability to dynamically analyze, or execute, the description of a software sys-

tem early in a project has many advantages: it helps the analyst to evaluate and

address poorly understood aspects of a design, improves communication between the

different parties involved in development, allows empirical evaluation of design alter-

natives, and is one of the more feasible ways of validating a system's behavior.

Thus, in order to fully realize the benefits from specification-based prototyping

two important criteria must be satisfied. First, one must have a language suitable

for expressing the high-level system requirements and refinement to the detailed soft-

ware requirements. Second, such a language must have a formal semantics and be

supported by tools which allow static analysis and execution. Furthermore, in our

107

work,wediscoveredthat sophisticatedexecutioncapabilities(e.g.,hardware-in-the-

loop simulation)canhavegreatbenefits.Theseexecutioncapabilitiesareprovided

by an environmentthat wecall NIMBUS[104,105,109]that wasdevelopedas a

testbedfor specification-basedprototyping. This sectiondescribesthesetools and

the rational behindtheir construction.

Specification-basedprototyping combinesthe advantagesof traditional formal

specifications(e.g.,precisenessand analyzability)with the advantagesof rapid pro-

totyping (e.g.,risk managementandearlyend-userinvolvement).The approachlets

usrefinea formalexecutablemodelof the system requirements to a detailed model

of the software requirements. Throughout this refinement process, the specification

is used as an early prototype of the proposed software. By using the specification as

the prototype, most of the problems that plague traditional code-based prototyping

disappear. First, the formal specification will always be consistent with the behavior

of the prototype (excluding real-time response) and the specification is, by defini-

tion, updated as the prototype evolves. Second, the risk of evolving the prototype

into a poorly designed production system is largely eliminated. Finally, the dynamic

evaluation of the prototype can be augmented with formal analysis.

When starting to develop NIMBUS, we identified the following fundamental prop-

erties such an environment must possess. First, it must support the execution of the

specification while interacting with accurate models of the components in the sur-

rounding environment, be they RSML -e specifications, numerical simulations, statis-

tical models, or physical hardware. Second, the environment must allow an analyst

to easily modify and interchange the models of the components. Third, as the speci-

fication is being refined to a design and finally production code, there should not be

any large conceptual leaps in the way in which the control software communicates

with the environment.

108

I I / I I' ,i

,' . if f i , r---- -7.

I models _'__ ControlSoftware _ mode_ jd
I I I J Simulation II i , ,

i Software_ (RSML'eSpecification)_' Software U

I I Actual _ __--_1 I Actual JJ

Sensor models at various _ / Actuator models at various
levels of abstraction _ onlall, s(anaaro nterl'aces allOW me _- - : .

" most suitable model (or physical levels of abstraction

component) to be used+ Model

used is easily changeable,

Figure 5.7: The NIMBUS Environment

In the initial stages of the project, we want the executions to take their input

from simple models, for example, text files or user input. As the specification is

refined, the analyst can add more detailed models of the sensors and actuators, for

example, additional RSML -e specifications or software simulations. In order to have

a closed loop simulation, a model of the environment can be added between the

sensor and actuator models. Finally, when the specification has been refined to the

point of defining the hardware interfaces, the analyst can execute it directly with the

hardware. This hardware-in-the-loop simulation closes the gap between the prototype

and the actual hardware. These ideas are illustrated in Figure 5.7.

In NIMBUS, the interfaces are connected via channels. A channel (in this context)

simply means the way in which data is passed from an interface in one component to

the interface in another component. Before going into the specific details about chan-

nels, it will be helpful to get an overview of the major participants in the environment

109

and how they interact.

I Observer

- Observes messages and

channe_ traffic

- Posslbio stalts_cal analysis

Other Application

. Hardware_n-_e-;oop

- Component simulations

- Ofl-lhe-shetf app_Lcabons

.,,.,,-.............1r
L...............:Ji

I NlmbusSIm

several instances of NimbusSim

can be loaded simultaneously

I Nimbus Manager

II
Chsnnel Control

Info

Registration t
Channel Manager

I**_._ _ Info _ _....%...,. - Performs AnabtlbiS

- Connects _annots

't

/ i.
/

,,/ Registmtmon
Info

RegiLstmtion
Info i

- I

"I "Execubon of state-based

componen! model

Figure 5.8: The architecture of the NIMBUS environment

Figure 5.8 shows the various components of the NIMBUS environment and gives

examples of how they interact. NIMBUSSim is the simulation and analysis tool for

RSML -e. Multiple instances of NIMBUSSim can run concurrently so that different

specifications can simulate different components of the system. Other applications

can also be added into the environment. Although it is not shown in Figure 5.8,

any application in the NIMBUS environment can exchange messages with any other

application.

The NIMBUS Manager allows the user to dynamically control the connections

between the various components which are registered with the NIMBUS system. Fig-

ure 5.9 shows the main window of the NIMBUS Manager. In the left-hand column,

all the channels currently registered in the system are listed. When the user clicks

on a channel name, the detailed information about that channel is displayed in the

110

areato theright of the channellist.

Foreachchannel,the NIMBUSManagerdisplaysthe channelname(in Figure5.9,

AltitudeChannel),the type (Send-Receive)andthreelists(sources,destinations,and

observers).In the lists arethecomponentsthat interactwith that particularchannel.

For example,Figure5.9showsthat Altitude channelcurrentlyhastwo sourcesand

twodestinations.Thesourcesare "MSExcelASWSystem"and"SimpleMFC Client

app."

Figure5.9: The mainwindowof the NIMBUS Manager

The check marks beside the component names in Figure 5.9 indicate whether

or not that component is currently active on the channel or not. A component

that is not active cannot participate in the message processing (sending, receiving,

publishing, etc) on that channel. Thus, Figure 5.9 shows that the "MS Excel ASW

System" component is active, whereas the "Simple MFC Client app" is not. Notice

111

in the figure that both "NIMBUSSim (ASW)" and "VB Pilot's Display" are active

destinations on the AltitudeChannel. The NIMBUS environment allows multicast

communication to allow multiple displays of the data. Also allowed are observers on

a channel (no observers are pictured in Figure 5.9).

The NIMBUS environment does not allow multiple active sources on a channel.

Thus, if the user where to click on the checkbox next to "Simple MFC Client app,"

then it would become the active source on the AltitudeChannel and "MS Excel ASW

System" would become inactive. For convenience, the first registered source and

destination on a channel are made active by default.

The NIMBUS environment allows us to execute and simulate this model using

input data representing the monitored variables and collect output representing the

controlled variables. Input data could come from several sources. The simplest option

for input is, of course, to have the user specify the values (either interactively, or by

putting the values into a text file ahead of time). This scenario is illustrated for the

ASW in Figure 5.10(a). Unfortunately, it is often difficult to create appropriate input

values since the physical characteristics of the environment enforce constraints and

interrelationships over the monitored variables. Thus, to create a valid (i.e., physically

realistic) input sequence, the analyst must have a model of the environment. Initially,

this model may be an informal mental model of how the environment operates. As the

evaluation process progresses, however, a more detailed model is most likely needed.

Therefore, in this stage of the modeling we may develop a simulation of the physical

environment. The NIMBUS architecture lets us easily replace the inputs read from

text files with a software simulation emulating the environment. This refinement can

be done without any modifications to the REQ model.

NIMBUS allows the user to visualize the system in many ways. The visualizations

constructed using powerful user interface construction tools, for example, Visual Basic

112

I IRsMLm° e°flText file with _-_ the REQ relation v
altitude data Altitude DOI_Command

Text file collecting

DOI commands

b° ExcelsPreadsheetI JRSMLmodelofJ"generating _ the REQ relation _1
altitude data Altitude DOl_Command

Excel spreadsheet

Figure 5.10: The REQ relation can be evaluated using text files or user input (a) or

interacting with a simulation of the environment (b).

and can utilize the many third party ActiveX controls that are on the market. This

makes it possible to construct rich visualizations, without expending large amounts

of money. Thus, more development dollars can be used to ensure the quality of the

specification.

When evaluating RSML -e specifications in NIMBUS, the analyst has great freedom

in how he or she models the environment. When we evaluated the REQ model,

we used text files or a software simulation of the physical process to provide the

RSML -e model with monitored variables and to evaluate the controlled variables.

As the IN' and OUT' relations are added to the RSML -e model, the data provided

(and consumed) by the model of the environment must also be refined to reflect

the software inputs and outputs (INPUT and OUTPUT) instead of the monitored

and controlled variables. This can be achieved in two ways; (1) refine the model of

the physical process to produce INPUT and consume OUTPUT, or (2) add explicit

models of the sensors and actuators to the simulation. In reality, the refinement

of the environmental model and the SOFT relation progress in parallel and is an

iterative process. The sensor and actuator models may be added one at a time and

the interaction with different components may merit different refinement strategies.

NIMBUS naturally allows any combination of the approaches mentioned above to be

113

used.

As the refinementof the SOFT relationand the modelsof the environmentpro-

gresses,we may at somepoint desireto performhardware-in-the-loopsimulation.

This not only providesa powerfulevaluationof the proposedsoftwaresystem,we

canalsouseNIMBUSto evaluatethe physicalsystemitself. For instance,by forcing

the RSML-e modelof the softwarerequirementsinto unexpectedand/or hazardous

states,wecaninject simulatedsoftwarefailuresinto the hardwaresystem.

5.3.1 Simulations of the ASW

For the ASW, wecreateda spreadsheetin MicrosoftExcel to emulatethe behavior

of the aircraft (RecallFigure5.10(b)). The graphicalinterfacefor the Excelmodel

is shownin Figure5.11.This simpleenvironmentalmodelallowsusto interactively

modify the ascentanddescentratesof the aircraft, andeasilyexploremanypossible

scenarios.

Figure5.12showsa mockupof a portionof thePilot's Displaythat wedeveloped

to showthis concept. Mockupslike this, which are availablewhile REQ is being

developed,could be usedto evaluatethe potential operator interfaceearly in the

developmentlife cycle. This can allow the specifiersto catch many errorsearly

and alsoevaluatethe REQ relation for, e.g.,potentialmodeconfusion.In fact, the

RockwellAdvancedTechnologyCenterhasbeenverysuccessfulat developinghigh-

fidelity mockupsof their controlpanelsanddisplaysfor the Flight GuidanceSystem

and usingthem to exploreoperatorissuessuchasmodeconfusion.

In the caseof the Altitude Switch, to simulatethe refinedSOFT relation we

modifiedour Excelmodelof the physicalenvironmentto producedigital and analog

altitude measures(Figure5.13(a)).The refinementwasachievedby simply making

Excelprovide the three altitudesand applyingthe two transfer functionsdefined

114

ASW System Calculations

epe©i_cationduls onlyw_ththe RE(: relotion
onL There_m, we'ronot trynOto odd nose or

Figure 5.11: The ASW Excel REQ environment

115

Figure5.12:A mockupof the Pilot's displayfor the REQ model

earlierbeforetheoutput wassentto theRSML-c model.Addingmeasurementerrors

to the sensormodelscanfurther refinethe simulationof the ASW. For instance,by

modifyingthe computationof thedigital altimeteroutputsto

Altitude

DigitalAlt = 8192 + _

where e is some normally distributed random error (easily modeled using standard

functions in Excel), we can provide a more realistic simulation that includes the

natural noise in the data from the altimeters.

As an alternative to refining the Excel model to include the altimeter models, we

can explicitly add altimeter models to the simulation (Figure 5.13(b)). In our case,

we added altimeter models expressed in RSML -e. By adding explicit models of the

sensors and actuators, we can easily explore how the software controller reacts to

simulated sensor and actuator failures. Note that the integration of various different

models with the RSML -e simulation of the control software does not require any

modifications of the RSML -_ model, the channel architecture of NIMBUS allows the

analyst to easily interchange the component models comprising the environment.

116

a.

Excel spreadsheet _1_ _

generating DigitalAIt- 1

altitude data and t -
• . DigitalAIt-2

simulating the !

altimeters _-_t i

RSML modelofthe i d_ iSOFT relation i DOI Comman Excel spreadsheet

1

RSML model

of digital

_ altimeter I / O_._.

-Excel spreadsheei--_ [RSML model " 4k(
b. generating I_ of digital _ I_ RSML model of

altitude data i Altitude-I altimeter 2 DigilalAll-.... 11_ the SOFT relation

RSML model
of analog

i
altimeter j

Excel i

i DOl-C°mm_d_, spreadsheet .]

Figure 5.13: Refined models of the environment; (a) using Excel to simulate the

physical process as well as the sensors and (b) using Excel to simulate the physical

process and RSML -e models to model the sensors.

117

a,

Front Sonars

Side Sonars

Motors

Pioneer on-board OS

Radio Modem

Unk

SaphiraClient
Sensor Valuta

Actuator

Commands

RSML _ Model of the

SOFT Relation

Infrared Range

Sensor

10. I Motors DAQ Card

Bump Sensors

_1
Se.,_or Values w] RSML _ Model of the

--/o:::L I soFTR0, ion

Figure 5.14: Summary of the hardware-in-the-loop simulations performed with the

mobile robotics platforms

5.3.2 Simulations of the Mobile Robotics

Figure 5.14 shows the configuration that we used for the hardware-in-the-loop sim-

ulations of the mobile robots. The Pioneer is shown in part a. of the figure and the

Lego-bot is shown in part b. The Pioneer has a high-level interface called Saphira.

The Pioneer has a small CPU on board which manages the actual hardware. The

sensor input and actuator commands are managed by the Pioneer OS which runs on

the Pioneer's CPU. Part of the Pioneer OS manages the communication over the ra-

dio modem. On the other end of the radio modem, Saphira translates the inputs from

the Pioneer OS into values the can be accessed by the user using Saphira function

calls.

In the case of the Pioneer, there is quite a bit of software between the RSML -e

simulation and the actual hardware. This situation is common in real world situations

since there probably already exists driver software for the hardware that you wish to

control. It is natural to use this existing software rather than encode all the details

in the specification.

118

NIMBUSalsoallowsthe analystto bypassanysoftwaredriversandmodelall as-

pectsof thecontrolin RSML-e. In thecaseofthe lego-bot,theRSML-e specification

giveslow-leveldirectionto the dataacquisition(DAQ)card. The cardthensupplies

the voltagesto run the Lego-botthrougha tether cable.Someaspectsof the Lego-

botsbehaviorhad to bemanuallycalibrated.For example,it is difficult to predict

in advancehowfast the robot will movegivena particular voltagesuppliedto the

motors. This dependson the strengthof the motorsand the gearingof the wheels.

Insteadof trying to calculatespeedsusingthe gearsizes,etc., wecalibratedthe IN

andIN' relationsbasedonexperimentation.

In the mobile roboticsdomain,it is virtually impossibleto developa realistic

simulationof the robot andits environment.Theability of NIMBUS to do hardware-

in-the-loop simulation allows us to extend our formal modeling approaches to systems

where experimentation is an integral part of the development process, for example,

mobile robotics.

5.4 Summary

In this chapter, we have illustrated the FORMpcs system model as well as the process

framework of specification-based prototyping. We have also illustrated this process

on the ASW and Mobile Robotics examples, including how these two examples can

be simulated in the NIMBUS environment. This chapter provides a basis for under-

standing the FORMpcs methodology. Even so, there are a number of questions that

remain open. First, how do we arrive at the REQ relation? How is the REQ relation

structured and how can we find the monitored and controlled variables? And, how

can all of this be tied to the product family work that was discussed in Chapter 4.

These questions are all addressed in the methodology itself, which is the topic of the

next Chapter.

Chapter 6

Methodology Overview

This chapter gives a high-level overview our Family Oriented Requirements Method

for Process Control Systems (FORMpcs) concentrating on the original contributions

of the dissertation. The methodology builds on both the preceding chapter and

Chapter 4 to present an integrated view of the overall process from high-level product

family requirements to a detailed specification of the SOFT relation. This process

and the activities in each phase also borrow from related work, especially CoRE [99]

and work done by Steve Miller [83, 82]. In this chapter, we will hightlight the original

components of the methodology while giving a broad overview of the process and

activities.

We begin by discussing FORMpcs in an idealized setting where the specifier

always has all the information necessary to make correct decisions at each stage of

the process. Often, however, this is not the case [91]. Thus, the idealized process

is not necessarily a realistic one. The iteration that one would expect to find in the

methodology is found in the section after the idealized process. Finally, we end this

chapter with a section on what languages are suitable for use with FORMpcs and

what the various tradeoffs between those languages might be.

119

120

6.1 FORMpcs Process Phases

This sectiondescribesthe idealizedFORMpcsprocessphases.Eachsubsectionbe-

low describesa phaseof the methodology,beginningwith the commonalityanalysis

and endingwith the specificationrelatedto the sensorsand actuatorsin the final,

physicalsystem. Along the way,FORMpcs guidespractitionersin definingenvi-

ronmentalquantitiesandoperatorsetpoints,developinganoverallstructurefor the

requirementsandthendevelopingadraft specification,refiningthedraft specification

(adding,for example,errorhandlingandfault recoverybehaviors),andfinally adding
detailsabout thesensorsandactuators.

6.1.1 Commonality Analysis

The commonalityanalysis,the first phaseof the methodology,beginswith a short

(i.e., oneto 5 paragraphs)high-leveldescriptionof the intendedfamily. This de-

scription is then refineduntil the analystcanbeginto identify the commonalities,

i.e., those features which are present in all family members, and the variabilities, i.e,

those features which vary across members of the family. This initial set of common-

alities and variabilities forms the basis for the rest of the process.

As we discussed in Chapter 4, we allow a family to be broken down along different

dimensions, for example, a hardware dimension and a behavioral dimension. In addi-

tion, we allow a family to be broken into several sub-families, for example, a general

family of flying craft might be broken down into fixed-wing aircraft and helicopters.

This family-level structuring occurs as a result of discovering additional commonali-

ties and variabilities during the commonality analysis. Finally, we will examine the

commonalities and variabilities in terms of whether they apply to the REQ relation

or whether they apply to the IN' or OUT' relations.

121

Define the Top-Level Family: The first activity of FORMpcs is to defining the

top-level family which will form the basis for the specification(s) developed in the

later phases. This important activity ends when a short description of the family

has been generated. We gave the high-level description the Altitude Switch family in

Chapter 4 and it is reproduced below for reference:

The ASW family consists of systems on board the aircraft that utilize

the values from the various altimeters on board to make a choice among

various options for actions (one of which being to do nothing) and perform

the chosen action.

From this high-level description, the initial commonalities and variabilities may

be stated.

Initial Commonalities and Variabilities: The initial commonalities and vari-

abilities are found by examining the system description and the high-level description

that was written in the previous activity. Much has been written about elicitation

and recording of the commonalities and variabilities for a product family [117,12,53]

and FORMpcs includes some guidelines as well as pointers to these references.

FORMpcs advocates a slightly modified approach starting with high-level com-

monalities and variabilities and working towards a more refined description of the

family. The highest level commonalities define the boundaries of the broadest pos-

sible product family. As more commonalities are added, the definition of the family

becomes more refined. We assert that it is useful to preserve which commonalities

define the outermost scope of the family - these are the least likely to change in the

future and, thus, should depend on the essential purpose of the system, i.e., the most

basic reasons for the system's existence.

122

In addition,becauseFORMpcsdealswith process-controlsystemsin particular,

weneededto providea connectionbetweenthe commonalitiesandvariabilitiesand

theREQ, IN', OUT' relations.Therefore,weadvocatenotingwhichrelationa com-

monalityor variability appliesto andpartitioningthe commonalitiesandvariabilities

basedonthat information.Thisseparationisusefulbecausewecanthenfirst concen-

trate first on the REQrelationandbeforemovingon to the IN' andOUT' relations

(asoutlinedin Chapter5).

In Chapter4 a numberof the initial commonalitiesfor the ASWwerelisted.The

ASW wasfirst definedasa broadfamily,allowingfor all possiblemembersof the

ASW.Thesehigh-levelcommonalitiesand variabilitiesarelisted againfor reference.

C1 All ASWsystemswill havea methodof measuringthe altitudeof the aircraft

CI.1 TheASWsystemwill usetheinformationabouttheaircraft'saltitudeto

makea decisionasto what actiontheASWsystemshallperform

V1 Theactionsthat the ASWtakesin responseto the altitudeand thecriteria to

performthoseactionsvariesfrom aircraft to aircraft

Then, we addedmorecommonalitiesand variabilitiesthat further definedthe

scopeandpurposeof theproductfamily. Wewill not duplicateall the commonalities

andvariabilitieshere,but wewill mentionthefollowingis anexampleof the original

text of [V4].

V4 Theperiodof timethat thealtitudemustbeinvalidbeforetheASWwill declare

a failuremayvary.

Note that this is anearlier,lessrefinedversionof [V4] than whatwaspresented

in Chapter 4; the refined version is presented below under the elaboration of the

commonalities and variabilities.

123

Identify Family Structure: Even for a family as small and simple as the ASW, we

can identify elements of structure in the family. This identification is useful because

it helps us to understand the family and it is invaluable if, in the future, we would

like to re-factor the family or incorporate the family as a part of a larger family. For

example, we might like to have one family that encompasses all the avionics devices

(not just the ASW). The techniques for representing the family structure that were

developed as a part of this research were discussed in Chapter 4 and this activity of

the methodology presents these techniques in a form suitable for practitioners.

One of the contributions of this activity is a greater explaining of how to identify

sub-families. We believe that a good clue to the existence of a sub-family is common-

alities that start with the word "if," for example, in the case of the ASW we could

have written all the DOI commonalities as "If the action to be performed is turning

on or off a DOI, then ..." This activity also involves the visualization of the family

structure as was discussed in Chapter 4

In Chapter 4 we presented several visualizations of the structure of the ASW

family (Figures 4.8 and 4.9).

Elaborate Variabilities and Commonalities: In the next activity in developing

the family description, the commonalities and (especially) the variabilities are refined

so that they contain actual quantities, or choices for the variations. This activity is

a precursor to developing the product family decision model (next), as well as later

when the tolerances and bounds of variables in the specification must be given.

When [V4] was first defined, we did not specify the tolerances on the period

of time that the ASW shall wait before declaring a failure. As we progressed in the

definition of the ASW family, that information was added so that variability four

appears as it was printed in Chapter 4.

124

V4 Theperiodof timethat thealtitudemustbeinvalidbeforetheASWwill declare

a failure mayvary between2 secondsand 10secondsfrom family memberto

family member.

Define the Decision Model: Thedecisionmodelrepresentsa recordingof which

choicesfor all the possiblevariabilitiesresultin valid familymembers.Obviously,the

morecomplexthe structureof the family,the morecomplexthe decisionmodelwill

be.

Building thedecisionmodelcanoftenhelpto identifycommonalitiesor variabil-

ities that may havebeenforgotten in the initial draft of the family requirements.

This is becauseengineers,familiarwith theproducts,mayrecallitemsthat mustbe

specifiedabouta particularfamilymembersthat theydid not recallwhenattempting

to generalizeto all familymembers.

Onewaythat thedecisionmodelmaybewritten downis by simplynotingwhich

choicesaremadefor eachfamily member. However,the most commontechnique

in the literature is a simpletabular representationsimilar to what wasgiven for

the ASW in Chapter4 and is reproducedin Figure6.1. In a family with a more

complexstructure,a hierarchicalseriesof tablesmight be usedwith onetable for

eachsub-family.

At the endofthe commonalityanalysis,therequirementsdocumentwill containa

descriptionof thefamily includingall thesub-familiesanddimensionsinvolved;and,

the analystwill haveidentifieda subsetof the commonalitiesandvariabilitiesthat

he/shewill useto specifythe REQ relationin the next stages.

125

Variability CS-123 CS-134 DD-123 DD-134 EF-155

of Analog Alt. 1 1 1 1 2

of Digital Alt. 1 2 1 2 3

Threshold Algo. Any Any Any Majority Majority

Invalid Alt. Failure 4 s 2 s 2 s 2 s 2 s

Threshold 2000 ft 2000 ft 2000 ft 2000 ft 1500 ft

Go Above Action None None None None Turn Off

Go Below Action Turn On Turn On Turn On Turn On Turn On

Go Above Hyst. 200 ft 200 ft 250 ft 200 ft 200 ft

Go Below Hyst. NA NA NA NA 200 ft

DOI timeout 2 s 2 s 2 s 2 s 2 s

Figure 6.1: A tabular representation of the ASW family decision model

6.1.2 Environmental Variables

In the environmental variables phase, the goal is to identify quantities in the environ-

ment that are important to the specification. Earlier, we discussed several models of

viewing the system's interaction with the environment. Many environmental quan-

tities are mentioned in the commonalities and variabilities that were created in the

previous phase. This phase of the methodology provides concrete guidance on how to

choose monitored and controlled quantities. In addition, this section will demonstrate

the characteristics of the various types of environmental variables.

Identifying Controlled Variables: The focus of this activity is to identify the

quantities that are under the system's control. We categorize the controlled variables

into several classifications:

126

• Environmental Quantities: Theseare variablesin the environmentthat

systemchangesin orderto achievetherequirements.Theseshouldnot be tied

to anyparticularactuators,but shouldrepresentin generaltheeffectsthat the

systemmayintroducein theenvironment.

• User Displays: Thesearevariablesthat needto bedisplayedto theuser.This

typeof controlledvariablesoftenrepresentindicatorlights,gauges,etc.that are

presentin thephysicalsystem.Their purposeis to helptheoperatordevelopa

mentalmodelabout thestateof thesystembeingcontrolled;thus,indications

of the stateof the controllerarealsooftenincluded.

• Values for Another Subsystem: These are variables that go to another

subsystem. This type of controlled variables is common when specifying one

piece out of a system or subsystem and there are certain details that must be

abstracted away.

This classification scheme is unique to FORMpcs and provides more guidance in

this area than what is currently available in either CoRE [99] or REVEAL [94].

In the ASW, one controlled variable is the DOI status, which we know from

[CDOI1] is changed by the ASW. As it happens, the DOI is an interesting case,

because the state of the DOI is both controlled and monitored by the ASW. This

is because other systems on the aircraft can turn the DOI on and off. In terms of

our categories of controlled variables, the DOI fits best as an environmental variable

because the DOI is a device that will exist on the aircraft presumably whether or not

the ASW is on board.

Another controlled variable is the failure indication of the ASW. The ASW is

required to supply an indication of whether or not it is operating correctly [C3].

Therefor, a controlled variable is required to support this indication. In terms of

127

the categories, failure indication fits best as a user display, but could also be viewed

as a subsystem interface because it may be used by other components on board the

aircraft.

Identifying Monitored Variables: This activity compliments the identification

of controlled variables by identifying the monitored variables. Monitored quantities,

similar to controlled quantities, are broken down into several different types that help

in identifying them.

• Environmental Quantities: Variables or conditions that exist in the envi-

ronment, are observable, and can be used to compute the values of controlled

variables.

• User set-points: Variables that are specified by the user (operator) of the

system. These variables change the way that the controlled quantities are com-

puted.

• Abstracted quantities: Variables that are received from another subsystem

that are introduced because the specifier desires to concentrate on the current

subsystem.

• Quality Indications: These are variables which indicate the quality or ability

to observe of other monitored variables. These variables are often Boolean, for

example, indicating that the altitude can or cannot be observed.

Certainly, the most obvious monitored quantity in the ASW is that of the Altitude.

This is clearly an environmental quantity, because the aircraft will have some altitude

whether or not the ASW is present. In addition, we know that eventually we will

have some kind of sensors in the system that actually measure the altitude.

128

Becauseit is alwayspossiblefor sensorsto fail, it ispossiblethat therewill times

whenthe altitude will not bemeasurable.Therefor,werequirea quality indication

for the Altitude, the Altitude_Qualityvariable.

Define the Variables: The monitoredand controlledvariablesrepresentthe in-

terfaceof the systemrequirements,the REQ relation, to the environment. It is

importantto capturethe essentialinformationabouteachvariable.In this activity,

FORMpcsprovidesa templatefor definingthe monitoredand controlledvariables

basedon [99]andalsoin [52].

In accordancewith theguidelinesin CORE, we advocate that for controlled vari-

ables a short description of the conditions under which the variable can take on its

various values is given. This activity helps in later stages as the informal description

of each controlled variable is refined into a formal description of the REQ relation

(and later the SOFT relation). In addition, as the conditions under which each vari-

able takes on its various values are defined, often previously overlooked errors can be

found.

An example of an initial controlled variable definition is shown in Figure 6.2.

Define Relationships Among Variables: In this activity, the relationships be-

tween the monitored and controlled variables that exist as part of the environment

(and in the absence of the proposed system) are noted. Thus, in this activity we are

encoding the NAT relation.

Jackson et al. provides good references on expression the system context and

the NAT relation, some of which is duplicated in FORMpcs [49, 47, 50, 51, 48, 32].

The primary method of visualizing the system's interaction with its environment is a

context diagram.

A system context diagram is a picture that shows each input and output to the

129

ISTATE VARIABLE I

CON_DOI_P2

Parent: NONE

Possible Values: On, Off,Uncommanded

InitialValue: UNDEFINED

Classified as: Controlled

Purpose: This variablerepresentsthe ASW's commanded statusof the Device of

Interest (DOI).

Interpretation:

On: Indicates that the DOI is commanded to be On. The DOI is com-

manded to be on when the aircraft enters the target region for turning

the DOI on, the DOI is not already on, and the ASW is not inhibited.

Off: Indicates that the DOI is commanded to be Off. The DOI is com-

manded to be off when the aircraft leaves the target region and after

a certain period of time has passed. If this time is UNDEFINED, then
the ASW will never turn the DOI Off.

Uncommanded: Indicates that the DOI is not commanded by the ASW.

This CON_DOI variable will be equal to Uncommanded in any step

were the ASW does not issue a command to the device of interest.

Issues:

• If the aircraft leaves the target area and the DOI is on, but was not commanded

to be on by the ASW, should the ASW turn it off?

Figure 6.2: The CON_DOI variable in Phase 2 of the methodology

130

I DOI 1

MON_DO_ON_DOI

CON_Failure __ MON_Altitude

MON Reset I MON Inhibit

_--I Operator I

Aircraft

Figure 6.3: The System Context Diagram for the ASW in this Phase

system. The key in capturing the NAT relation is to begin to think about how the

rectangular boxes (i.e, the monitored and controlled variable sources) interact with

one another in the environment. An example system context diagram for the ASW

is shown in Figure 6.3.

At the end of this phase, the specification will have a list of all the monitored and

controlled variables used in the system cataloged according to their type. This will

form the boundaries of the REQ relation. Furthermore, there will also be a statement

of the NAT relation, i.e., a statement of the constraints that are imposed upon the

environmental variables in the absence of the proposed system(s).

6.1.3 Initial Structure

In the initial structure phase, the environmental variable descriptions developed in

the previous phase along with the product family structure identified in the first

phase are used to develop an initial structure of the REQ relation. In languages

131

that support a module construct, specification entities may be grouped together into

pieces that can be reused across the product family. In languages that do not support

a module construct, specification pieces can be formed by textual delimitation (e.g.,

using comments) and physical grouping. Component reuse can then be accomplished

by cut-and-paste.

In this and later sections, we have use the modularized version of RSML -e pro-

posed in the next chapter; thus, Chapters 6 and 7 are dependent upon one another.

Because this chapter provides the motivation for the addition of the modules, we

have chosen to present the methodology overview first. All that is really necessary to

understand the examples here is that a module consists of a number of state variables

that are imported, a number that are exported, and a number that are encapsulated

(hidden).

Define Dependency Relationships: In this activity, the monitored variables and

modes are necessary for the computation of each controlled variable are identified.

The goal of this activity is not to produce a detailed dependency graph. Rather, the

goal is to formulate a solid idea of the order in which entities in the system must be

computed so that there are no circular dependencies between the various variables.

The first step is to make a list in each controlled variable definition of which other

controlled variables, monitored variables, and mode machines it depends upon. Then

it is possible to examine each variable and attempt to identify circular dependencies.

We advocate viewing a large specification as a series of functional blocks. The

different blocks can then be drilled down into in a functional-decomposition type

style. This helps to sequence the computation in broad strokes, and then it is easier

to avoid circular dependencies within the block. Nevertheless, circular dependencies

can be difficult to see, which is why a tool supported language can be invaluable.

132

Define Modules and Interfaces: In this activity, the dependencyrelationships

createdpreviouslyareusedto start to grouppiecesof the computationtogetherto
form modules.

Parnas[88]defineda criteria to be usedin decomposinga systeminto modules

calledinformationhiding. Usingthis philosophy,everymodulein the systemshould

be chosenso as to encapsulatea decisionor severaldecisionsabout the system,

for example,a modulemay encapsulatea variability or groupof variabilities. The

interfaceof sucha moduleexposesonly the essentialinformationthat the rest of

the specificationrequires. It hasbeensuggestedin CoRE [99]that a methodfor

determiningwhichdecisionsshouldbegroupedtogethershouldbewhetherthey are

expectedto changetogether.Still anotherwayto viewa moduleis asanadditionto

thevocabularythat is usedto expressthe requirements.This is the reasoningthat

liesbehindthe standardmodulesusedin functionaldeclarationstylein RSML-e. A

modulemayallowthespecifierto mapa constructin thephysicaldomainto asingle

constructin thespecification.

One building block that is usefulfor the ASW is a modulethat exports the

thresholdedaltitude taking into considerationthe hysteresisfactor that is required.

The interfacefor this moduleis definedin Figure6.4.

The outcomeof the this phasephasewill be that the REQ relation is divided

into aseriesof manageablepieceseachof whichwill bespecifiedin detail in the next

phaseof the methodology.

6.1.4 Draft Specification

In this phase, a preliminary behavioral specification of the system requirements is

developed by refining the module definitions developed in the previous stage into

working pieces of the specification. This first version of the specification will deal

133

MODULE ThresholdedAltitude _P3 :

INTERFACE :

IMPORT Altitude_P3 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P3 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Hysteresis_PS : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT Direction_P3 : UpDownType

Purpose : &*L This parameter tells the thresholding algorithm

which direction we are interested in applying the hysteresis

to. If the direction is specified as Down, then we will have to

go above threshold altitude by the hysteresis amount before we

can declare that we are above (and, thus, be allowed to declare

below again). L*&

END IMPORT

EXPORT Above0rBelow : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

END DEFINITION

END MODULE

Figure 6.4: The ThresholdedAltitude Interface in Phase 3

134

EXPORT CON_Failure_P4 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS TRUE IF

TABLE

DURATION(AttemptingOn() , 0 S, Clock) > DOI_Timeout_P4 : T * * * ;

DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P4 : * T * * ;

DURATION(MON_Altitude_Q uality_P4 = Invalid, 0 S, Clock) : * * T * ;

PKE(CON_Failure_P4) = False • * * * T ;

END TABLE

EQUALS FALSE IF

TABLE

DURATION(AttemptingOn() , 0 S, Clock) > DOI_Timeout_P4 : F ;

DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P4 : F ;

DURATION(MON_Altitude_Q uality_P4 = Invalid, 0 S, Clock) : F ;

PKE(CON_Failure_P4) = False : F ;

END TABLE

END EXPORT

Figure 6.5: The CON_Failure variable in Phase 4 of FORMpcs

primarily with the intended, normal case behavior. While failure modes and fault

tolerance must be kept in mind, these characteristics will be added to the specification

in later stages.

Specify Each Controlled Variable: In this activity, how each controlled variable

assumes its various values is specified. This activity involves not only thinking about

what values are necessary to compute the controlled variables, but exactly how those

variables contribute to the controlled values. Much of the information on specifying

controlled variables was adapted from CORE; however, we have added a distinction

between two styles of specification: equivalence-style and transitional-style.

Equivalence-style specification of a state variable is, perhaps, the most straight-

forward. In this style, the specifier states explicitly in a series of cases what value

135

the state variableassumes.The valueof the variableis, thus, alwaysdefinedunless

explicitly notedotherwiseby the specifieror unlessit is a child underneathanother

statevariable.An exampleof anequivalence-stylespecificationfor the Failurestate

variableis shownin Figure6.5.

For any computationof the specification,it is expectedthat oneand only one

caseof the variablewill be true; the statevariablethenassumesthe valuespecified

by the oneuniquecase.If the statevariabledoesnot havea casewhichevaluatesto

true in somestep,thenwesaythat the variabledefinitionis incomplete because for

the particular sequence of inputs events leading up to this step the variable does not

have a defined value. If the state variable has more than one case which is true then

we say that the specification is inconsistent; how can we know which case is the one

that was intended by the specifier?

On the other hand, sometimes we are not so interested in what values a variable

should have in each step but, rather, it is desirable to specify when the variable should

change values. A transitional-style specification consists of a series of transitions, each

with a source state, a destination state, and a condition. When the condition is true

and the variable has the value specified by the source state, then the variable will

become the value specified by the destination state.

Transitional-style specifications have the same notion of consistency as equivalence-

style specifications. In contrast, a transitional-style specification is usually expected

to retain its current value in the absence of any need to change. Therefore, transitional-

style specifications often do not make use of the notion of completeness because it is

expected that there will be some steps (probably many steps) in which the none of the

transitions may be taken. A transitional-style specification may be made complete

by adding transitions from a state back to itself that cover the conditions underwhich

the state variable shall retain that particular value. An example of a transitional-style

136

EXPORT CON_DOI_P4 :

PARENT : NONE

DEFAULT_VALUE : Uncommande d

TRANSITION Uncommanded TO On IF

TABLE

DOI_Action_Ok(On) : T T ;

WHEN(ThresholdeclAlt_P4. Result P4 = Below, False) : T * ;

GoBelowAction = TurnOn : T * ;

WHEN(ThresholdedA1t_P4. Result_P4 = Above, False) : * T ;

GoAboveAction = TurnOn • * T ;

END TABLE

TRANSITION Uncommanded TO Off IF

TABLE

DOI_Action_Ok(Off) : T T ;

WHEN(ThresholdedAlt_P4. Result_P4 = Below, False) : T * ;

GoBelowAction = TurnOff : T * ;

WHEN(ThresholdedAlt_P4. Result_P4 = Above, False) : * T ;

GoAboveAction = TurnOff • * T ;

END TABLE

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P4 = On, False)

TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P4 = Off, False)

END EXPORT

Figure 6.6: The CON_DOI variable in Phase 4

137

specificationis shownin Figure6.6.

Identify Potential Modes: In general,modesof the systemarepointsof discon-

tinuity in the functionsof thecontrolledvariables.Forexample,a controlledvariable

might dependon a specificseriesof userinputs and eventsbeforeit can take on a

particularvalue;thus,wewill requirea modemachineof somekind whichwill record

for us where in the sequence of actions we are and what input we expect to occur

next.

A concrete example is that of a weapons firing interlock. It is usually true that a

number of conditions must become true before pressing the 'fire' button will cause the

weapon to fire, for example, perhaps the airplane must be traveling at a particular

speed, or at least a certain altitude. Furthermore, it is usually not desirable to have

the depression of the firing button precede these events: what if the firing button is

stuck down and we cross a threshold altitude which makes the preconditions true?

We probably do not want to fire in that case. To model this type of behavior, the

specification must store internal state information so that it can track where in the

sequence it is.

Modes partition the functionality of the system. When a mode variable has one

value, the system behaves in one way and when the mode has a different value, the

system behaves in a different way. The above example of a sequence of values is not the

only time when this occurs. Modes may represent some alternate or reduced operation

of the system. For example, many systems have a startup or shutdown mode in

addition to the normal operation mode. Another example is when a system has some

reduced functionality modes; for example, when the values of some environmental

quantities are not available, the system may only be allowed to perform a subset of

the available actions.

Finally, modes may be introduced to represent to the environment or controller

138

what the system is doing. For example, in an aircraft, the various systems can be on

autopilot, or in landing or take-off modes. If the system being built is responsible for

implementing one or more of these modes, then it will be useful to represent them

explicitly in the requirements because they are the language in which the customer will

be most comfortable to communicate. In addition, it be common to state properties

about these modes, for example, "the system shall not raise the landing gear while

in landing mode."

There are a number of examples of variables which might be considered modes in

the ASW specification. One example is ASW_System_Mode variable. This variable

controls the overall functioning of the ASW. In phase four, the ASW_System_Mode

variable has only two values: Operating and Rest. Nevertheless, this same structure

could be used to represent a startup and shutdown mode, or it could be used to

represent different modes of reduced functionality simply by adding values to the

ASW_System_Mode variable and then defining appropriate behavior for those modes.

Using the module construct (or cut and paste) it is possible to allow modes to share

functionality while still differing significantly in some areas.

Use Tools to Visualize the Preliminary Behavioral Specification: Many

formal languages are supported by tools, including RSML -e, which is supported by

the NIMBUS tools. Simulation of the specification was discussed in Chapter 5.

The outcome of the draft specification is a document which can be reviewed so

that all interested parties can agree on the essential behavior of the REQ relation

without getting bogged down in details about particular sensors and actuators, or

about complex failure modes and error handling. Using RSML -e with the NIMBUS

environment, it is possible to simulate the high-level behavior at this point; therefore,

everyone involved on the specification effort can get a good idea of the behavior that

139

wasspecified.

6.1.5 Detailed Requirements

When producingthe Detailed Requirements,the analystwill begin to add to the

REQrelationall thingsthat wereinitially left out of thepreliminarybehavioralspec-

ification. In this phase,wewill considerthe fault toleranceof the specification,error

conditionswhichmayarisedueto the fact that weareusingsensorsand actuators,

andsoforth. Also,hearis whereweneedto considerin moredetail the startup and

shutdownbehaviorof the system.

As thesenewbehaviorsareadded,wemayfind it necessaryto revisit decisions

whichweremadeaboutthepreliminaryspecificationaswellasabouttherequirements

structure.Thus, it is natural to iteratebetweenthesephases.

At this point, the analystsshouldbeginto think about completenessand consis-

tency of the REQ specification.Therefore,if analysistools areavailable,the REQ

specificationshouldberun throughthesetoolsandanyerrorswhicharefoundshould

becorrected.

Specify Initialization and Shutdown Activities: Most controllershave (or

shouldhave)a differentoperationalprofile immediatelyafter they are turned on

and just beforethey areabout to turn off. The reasonfor this is that the environ-

ment in whichthe controlleroperatesis a systemof its ownright; it existswith or

without thepresenceor operationof the controller.Certainly,therearetwodifferent

systems:onewith the controllerturned on and onewith the controllerturned off.

And, thesesystemsbehavedifferentlyfrom oneanother.

The ASW'sstartup modeis very simple: it just has to receivefive secondsof

valid altitude in orderto transferto normaloperation.Thus, it canbe represented

140

EXPORT CON_Failure_P5 :

PARENT : NONE

DEFAULT_VALUE : False

TRANSITION False TO True IF

TABLE

ASW_System_Mode_P5 = NormalOperating : T * ;

ASW_Operating_Mode_P5.C ON_Failure_P5 : T * ;

ASW_System_Mode_P5 = Degraded • * T ;

ASW_Operating_Mode_P5.C ON_Failure_P5 : * T ;

END TABLE

TRANSITION True TO False IF ASW_System_Mode_P5 = Reset

END EXPORT

Figure 6.7: The CON_Failure variable in Phase Five

with only a single transition and does not need other behavior. In other systems, the

controller may need to wait until it develops a certain confidence in the estimates of

the monitored quantities before it issues any commands to the environment.

Specify Error Handling: The first thing to do in specifying the error handling

behavior of the specification is to create a list of potential error conditions. Note

that all of the possible error conditions may not be known at this time; some error

conditions may only come to light when information about the sensors and actuators

is added. Nevertheless, many possible error conditions will be known during our

development of the REQ relation and those error conditions should be handled.

A useful technique is to have a global failure mode that encapsulates the failure

mode of the system. High-level failure conditions cause this mode to transition be-

tween its various values (i.e., "Ok" and "Failed"). The global failure mode can then

be supported by having each module below the main module also export a failure

indication that covers failures local to that module. Then, the global failure mode

141

checkseachof theselocalfailure indicationsand,if they aretrue, maydecidedeclare

a failure or to enter somereducedfunctionality modeasis describedin the next

activity. This techniqueof structuring the failure modecomputationis uniqueto

FORMpcs. The ASW'sglobalfailuremodeis shownin Figure6.7.

Degraded Modes of Functionality: Often,wewishto havea systemwhichhas

somebehaviorunder ideal conditions,i.e., goodknowledgeabout the environment,

but which will continueto function in a safemannerevent if conditionsarenot

ideal (for example,with failedsensorsor actuators).It is possibleto planaheadand

establishseveraldifferentmodesof functionalityrangingfromfully operationalwhere

all informationis knownto anacceptableconfidenceto a shuttingdownmodewhere

the systemwill turn itselfoff andleavethe processin a safestate.

This sort of systemis difficult to constructbecause,in a sense,manydifferent

systemsarebeingspecified- onefor eachdegradedfunctionalitymode.Nevertheless,

it maybe that the systembehavioris moreor lessthe samein thesevariousmodes.

In that case,the modesmay be ableto be treatedasa family of sorts. This view

of degradedmodesof functionalityasa family andthe structuring of themwasfirst

introducedin FORMpcs.

The variousmodesof the ASW and how the ASW switchesbetweenthem are

shownbelow. We havesimply addedadditional statesto the undevelopedASW_-

System_Modefrom the previousphase. In Figure 6.8, we haveaddedan overall

failuremodeto dealwith systemfailuresandalsoavaluefor thestartedanddegraded

functionalitymodes.

In order to enter the degradedfunctionalitymode,wemust know whethertwo

episodesof invalid altitude lasting at least one secondhave occurredwithin one

minute of eachother. This requiresstate information,so wehaveintroducedthe

EpisodeMonitor_P5variableto tracktheoccurrenceof episodesandinformtheASW_-

142

STATE_VARIABLE ASW_System_Mode_P5 :

VALUES : {Startup, Normal0perating, Degraded, Failed, Reset}

PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION Normal0perating T0 Reset IF MON_Reset_P5

TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION Normal0perating TO Degraded IF

EpisodeMonitor_P5 = 0ualifyingEpisode

TRANSITION Degraded TO Normal0perating IF

DURATION (MON_Altitude_Quality_P5 = Valid, 0 S, Clock) > 1M

TRANSITION Reset T0 NormalOperating IF

DURATION(PKE(ASW_System _Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

Figure 6.8: The ASW_System_Mode variable in Phase 5

143

STATE_VARIABLE EpisodeMonitor_P5 :

VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}

PARENT : NONE

Purpose : &*L This simple state variable tracks whether or not

we have met the conditions for being in degraded functionality

mode. Namely, whether or not we have seen two periods of

invalid altitude lasting 1 second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF

DURATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) > I S

TRANSITION FirstEpisode T0 QualifyingEpisode IF

TABLE

DURATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) > I S : T ;

DURATION(PKE(EpisodeMon itor_P5) = FirstEpisode) > 1S : T ;

END TRANSITION

TRANSITION FirstEpisode TO NoEpisode IF

DURATION(PKE(EpisodeMon itor_P5) = FirstEpisode) >= i M

TRANSITION QualifyingEpiso de T0 NoEpisode IF

DURATION(MON_Altitude_Q uality_P5 = Valid, 0 S, Clock) >= 2 M

END STATE_VARIABLE

Figure 6.9: The EpisodeMonitor variable in Phase 5

144

System_Modevariablewhena qualifyingepisodeasoccurredandit is necessaryto

enterdegradedfunctionalitymode.This is shownin figure6.9.

Specify Tolerances and Handle Violations: In the ideal world of the REQ

specification,the valueof eachcontrolledvariableis knownwith exactprecision.

Nevertheless,weknowthat eventuallya physicalimplementationof the systemwill

bebuilt andthat in that implementationwecannotknowthe valuesfor certainor to

an infinite accuracy.

In manycases,the toleranceof a controlledvariableis constantthroughoutthe

entirespecification.In that case,thetolerancemaybespecifiedin muchthesameway

asthe precisionwasspecifiedfor monitoredvariables.In other cases,the tolerance

of a controlledvariablemaybe a function of oneor moremodesof the system.In

the methodology,wegiveseveralexamplesof whenthis canbe thecase.

Theoutcomeof this phaseisa completedspecificationof REQ.This specification

can then be analyzedusingwhateverformalanalysistechniquesaresupportedby

language/toolsetusedin the specificationeffort.

6.1.6 Sensors and Actuators

Phases two through five have illustrated how to move from the commonality analysis

in phase one to a completed REQ specification in phase five. In this final phase, the

process will be repeated for the IN' and OUT' relations. In discussing this phase, we

point out which parts of the process are generalizable and what information needs to

be considered specifically for the hardware.

Identify and Describe the Sensors and Actuators: The first step in adding

the IN' and OUT' relations is to identify and describe the sensors and actuators

145

involvedin the system.After that, the input and output variablesfor the software

canbe identified.This activity is analogousto phasetwo for the REQ relation.

For the ASW,eachaircraft asa numberof altimetersthat measurethe altitude,

a status indicationfrom the DOI, a resetsignal,and an inhibit signal. All inputs

exceptfor the altimeterscanbemappeddirectly to the existingmonitoredvariables.

Therefore,on the input sidewewill concentratein refiningthe IN' relation for the

Altitude monitoredquantity.

The commonalityanalysisfrom phaseone tells us that we will havea varying

numberand typeof altimetersfor eachaircraft that wewishto build. Furthermore,

we know that the different typesof altimetersyield different information: analog

altimetersgiveonlyaboveorbelowwhereasdigital altimetersyieldanumericaltitude.

TheDOI commandindicationandthe failureoutput arethe controlledvariables

of concernfor the OUT' relation. Only the failureoutput needssignificantchanges

to specifythe output relation.

For the failure indication,the ASWmust producea pulseon a watchdogtimer

at leastevery200MS or elsetheotherdevicesonboardthe aircraft will believethat

the ASWhasfailed. This is the oppositefromthe waythat the REQrelationworks,

whereweonly producean indication if there was a failure. Thus, we need a small

state machine that will produce a pulse if there is not a failure.

Outline the IN' and OUT' Relations: Just as for the REQ relation, the first

step in specifying IN' and OUT' relations is to outline the computation. In this

activity, depending on the complexity of the IN'/OUT' relation, a data dependency

graph might be developed, modes identified, and so forth. Furthermore, if the IN' and

OUT' relations contain sufficient structure, modules may be introduced. Indeed, in

systems with noisy sensors/actuators, or sensors/actuators with complex IN relations,

the IN' and OUT' relations may represent the majority of the complexity of the

146

software. Thus, the stepwiserefinementprocessdefinedas the foundationof the

methodologycombinedwith the activitiesof this phasewill beessentialto achieving

a correctspecificationof the SOFTrelation.

In the ASW family, eachaircraft differs in the numberand type of altimeters

and in the algorithmusedto determinewhetherthe aircraft is aboveor belowthe

thresholdfromthevariousaltimeters.Thefirst thingto noticeis that thespecification

of REQ fromphasefiveexpectsa numericaltitude input. For compatibility,wewill

changethe input to REQ to bea thresholdedvalueandmovethethresholdingof the

digital altimetersinto the IN' relation.

Thus,theoverallstructureoftheIN' relationforAltitude isgivenbythefollowing

moduledefinition:

MODULE Altimeters_IN_P6 :

INTERFACE :

IMPORT CONSTANT NumDigitalAlt_P6

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : i0

END IMPORT

: INTEGER

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : I0

END IMPORT

IMPORT DigialAlt_P6 : [I T0 NumDigitalAlt]

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

OF INTEGER

IMPORT CONSTANT Threshold_P6 : INTEGER

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER
UNITS : ft

147

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for EoinE above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT AnalogAit_P6 : [I TO NumAnaiogAlt] OF AboveBelowType

END IMPORT

IMPORT DigitaiQuaiity_P 6 :

END IMPORT

IMPORT AnalogQuality_P6 :

END IMPORT

IMPORT INTERFACE AltitudeVoter_P6 :

END IMPORT

EXPORT Altitude_P6 : AboveBelowType

END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType

END EXPORT

[i TO NumDigitalAlt] OF AltitudeQualityType

[I TO NumAnalogAlt] OF AltitudeQualityTyps

END INTERFACE

DEFINITION :

END DEFINITION

END MODULE

The interface AltitudeVoter will be used by all the various implementations of the

altitude voting algorithm. The specification for each aircraft will decide how many

148

altimetersandwhichalgorithmto use.This is discussedin greaterdetail in the next

chapter.

Specify the Normal-Case: For this activity, we need to fill in the actual behavior

of the IN' and OUT' modules that we have declared. At the end of this activity, it is

possible to simulate the entire SOFT relation by connecting the IN', OUT' and REQ

relations together. The definition of the Altimeters_IN module is given in Figure 6.10.

We also need to specify the various altitude voting algorithms, but for space

concerns these will not be duplicated here. They can be found in Appendix C.

At this point, it is possible to simulate the entire SOFT relation by connecting

the IN' OUT' and REQ relations together.

Specify Detailed SOFT Relation: With the preliminary version of the IN' and

OUT' relations completed, it is possible to move on and consider the startup, shut-

down, and degraded functionality modes of the IN' and OUT' relations.

All the analyses that were done on the REQ relation are also applicable to the

IN' and OUT' relations. They should be consistent and (ideally) complete just as

the REQ relation was refined to be. In addition, analysis to determine the timing

properties of the SOFT relation, and the deviation of the output under noisy data

should be performed.

The outcome of this phase is the completed behavioral specification of the SOFT

relation.

6.1.7 Iteration Among the Phases

As in CORE, we felt it important to provide guidance on how the specifier would

expect to iterate among the various phases of the idealized process.

149

DEFINITION :

MODULE_INSTANCE ThresholdedDigital_P6 :

[I TO NumDigitalAlt]

PAKENT : NONE

ASSIGNMENT

Altitude_P6

Threshold_P6

AboveHysteresis_P6

BelowHysteresis_P6

END ASSIGNMENT

END MODULE_INSTANCE

OF ThresholdedAltitude_P6

:= DigitalAlt_P6,

:= EXTEND Threshold_P6

T0 [i TO NumDigitalAlt]

:= EXTEND GoAboveHyst_P6

TO [I T0 NumDigitalAlt]

:= EXTEND GoBelowHyst_P6

T0 [I T0 NumDigitalAlt]

OF INTEGER,

OF INTEGER,

OF INTEGER

SLOT_INSTANCE AltitudeVoter_P6 :

ASSIGNMENT

Num_of_Alt := NumDigitalAlt_P6 + NumAnalogAlt_P6,

Altitudes := ThresholdedDigital_P6.Result_P6 I AnalogAlt_P6,

Qualities := DigitialQuality_P6 1AnalogQuality_P6

END ASSIGNMENT

END SLOTINSTANCE

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoter_P6.Altitude_P6

EQUALS AltitudeVoter_P6.A1 titude_P6

END EXPORT

EXPORT AltitudeQuality_ P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoter_P6.AltitudeQuality_P6

EQUALS AltitudeVoter_P6.A1 titudeQuality_P6

END EXPORT

END DEFINITION

Figure 6.10: The Definition of the Altimeters_IN module

150

Constructing Partial Specifications: In thespecificationprocess,it is common

to haveoneportion of the specificationmorerefinedthan anotherportion. This is

sometimesaconsciouschoice- focusingonsomeaspectsof thesystemwhileignoring

others.For example,during theSensorsandActuatorsphase,someof the specifica-

tion will still be at the detailedrequirementsphasewhile theeffort concentrateson

refiningthe specificationof a particularsensoror groupof sensorsandactuatorsas

describedabove.

Anothersituation iswhenabstractingawaycertainportionsof the computation.

Forexample,inavionicssystemssometimestherearecomplexconditionsthat mustbe

satisfiedfor certainmodetransitions.Theseoftendependoncontrollaws,continuous

functions,etc. that mightnot includedin this stagein the modeling.Furthermore,

the way in whichtheseconditionsaremet is oftenwell understood.Thus, it may

bebeneficialto delaydefiningexactlyhowtheseconditionsare'satisfied until later

in the specification effort. When this information is added, the new parts of the

specification will need to go through the phases of just like the other parts of the

specification.

Monitored and Controlled quantities: Sometimes, new monitored and con-

trolled quantities will emerge as the preliminary behavior specification is constructed.

There are several reasons why this might be the case. First, additional information

from the environment may be needed to be able to compute the values of the con-

trolled quantities. Second, as the system is studied in more detail, it may become

clear that there are more controlled variables. Finally, to make it possible to make

clear and concise statements about the domain it is sometimes easier to adjust the

particular choices of monitored and controlled variables rather than express a very

complex relationship between the ones that are already defined.

151

Draft Requirements and Requirements Structure: It is natural to switch

back and forth between the structuring activities and the development of the be-

havioral specification. Specification of the behavior in more detail may lead to the

discovery of modules or pieces of the computation that may be reused across different

sections. In addition, it may be desirable to reorganize the computation, or refine

the interfaces of the modules. Similarly, as the module structure is developed, new

information about how the computation is to be performed may come to light.

The iteration between these activities is similar to the iteration that one would

normally see in an object oriented development between the creation of the class

diagrams and the creation of sequence diagrams. That is, the creation of a sequence

diagram may inspire the creation of a new class (or classes) and the creation of a new

class inspires sequence diagrams that use that class.

Detailed Requirements and Prior Phases: When adding the information in

the detailed requirements phase, the structures that have been chosen for the re-

quirements may not be conducive to adding fault tolerance, etc. Thus, the require-

ments may have to be restructured to support these additional behaviors. In general,

it is necessary to keep these issues in mind from the beginning of the specification

effort, but beneficial to not get bogged down in the details when first understand-

ing the system. This is a delicate balance which becomes easier with experience in

specification.

Of course, it is impossible to give a detailed overview of all the possible ways

that one might iterate between the various phases of the methodology. We have en

devoured here to point out the most common sources of iteration so that a specifier

may proceed through the method with an "eye to the future" in the earlier phases.

152

6.2 Languages for FORMpcs

This sectiondescribessomeof the languagesthat are suitable for usewith the

FORMpcs process.The goal of this sectionis not to be a comprehensivesurvey

of all specificationlanguages;that wouldconsumefar to muchspacein the disserta-

tion. Rather,the goalis to illustratethat FORMpcsis applicableto a widevariety

of languages,whichwasoneof the goalsin developingthe methodology.

Of course,languagesarenot equallysuitablefor usewith FORMpcs. In partic-

ular, there is a noticeabledifferencebetweenlanguagesthat support somebuilt-in

notionof modularityandreuseandthoselanguagesthat donot. This is understand-

ably dueto the heavyemphasison reuseandproductfamiliesin FORMpcs.

Statecharts[36,37, 38] is basedarounda named-eventdrivenexecutionmodel.

Eventsareproducedbytaking transitionsin the statediagramandthoseeventscan

causeotherevents,andsoforth. Theseeventsareglobally visible and, as a result, it

can be very difficult to know how changes to one part of the system can effect other

parts.

During the specification of TCAS II (Traffic Alert and Collision Avoidance II)

using a Statechart variant (the original version of RSML), Leveson et al. discovered

that a major source of errors in the specification were due to the event mechanism

of Statecharts [65]. In addition, this global event visibility makes it very difficult to

reuse pieces of a Statecharts specification or to "simulate" the effect of modules.

SCR (Software Cost Reduction) [45, 46] is a tabular, state-based specification

language designed with a formal semantics. The tabular nature of SCR results in

a data-flow type specification language where a change in an input variable results

immediately in a change in the tables that depend on that input variable. This in

turn results in changes in the tables that depend on those tables and so forth until

table(s) defining the values of the output variable(s) change. Circular dependencies

153

are clearly not allowedin SCR, becausethey would result in potentially infinite

recursion.The data flow, non-circularstructureof SCRmakesis relativelyeasyto

achievea separationof concernsamongthe piecesof a computation.Thus,it would

be possiblein SCRto cut and pastegroupsof variabledefinitionsto simulatethe

effectof a modularityconstruct(this wouldworksimilarly for the current versionof

RSML-e).

The CoREmethodologyusesa modifiedversionof SCRasits example. In the

modifiedversion,SRC is augmentedwith "classes"that are essentiallygroupsof

elementsin thedatadependencydiagram.Nevertheless,CoRE classes are static and

cannot be "instantiated" multiple times within the specification. For example, we

could not defined a CoRE class that voted on the altitude and then reuse that class

definition n times, once for each altimeter input.

Statecharts, SCR, and RSML -e have all been used successfully on moderately

sized process-control systems projects. Nevertheless, it will be challenging to use

these languages taking full advantage of the FORMpcs process because their lack of

module support. Clearly, if these languages had a module construct they would be

the top choice for developing requirements for process-control systems.

Most programming languages like C++, Ada, Java, etc. have excellent modularity

features. However, it has been shown that programming languages are simply not

suitable for expressing requirements. They contain too many constructs that may be

abused during the requirements phase to introduce design and implementation detail.

ADLs were discussed in Chapter 2 in regards to their capabilities in the devel-

opment of product families. ADLs have rich modularity and module-interconnection

concepts - these properties are fundamental to ADLs. However, like programming

languages, architecture description languages are oriented specifically towards soft-

ware design and not software requirements.

154

ThespecificationlanguagesZ [101,119],VDM [24,31]andotherlogic-stylespeci-

ficationlanguagesusepredicateand/or propositionallogicto recordsystemspecifica-

tions. Suchlanguageswouldbewellsuitedto usewith FORMpcs,becausespecifying

detailsat an appropriatelevelof abstractionwouldnot bea problem. In addition,

it wouldbedifficult to introducedesignand implementationdetailsin sucha spec-

ification. Furthermore,Z and VDM both havegoodmodularitysupportand would

beableto implementthe productfamilyandstructuringfeaturesof FORMpcs.

Thedrawbackoflogic-stylespecificationlanguagessuchasZ andVDM hasproven

to be that somestakeholdersin the projecthavedifficulty understandingthe math-

ematicalsymbolsandconceptsused.Of course,engineersandscientistswouldhave

noproblemwith thesetechniques,but higher-levelmanagersandregulatoryagencies

mayhave(andhavehad) problemswith thesenotations.

The synchronouslanguagesEsterel [8] and Lustre [35, 34, 73, 74] are several

languagesboth supportedby the sameFrenchcommercialcompany,EsterelTech-

nologies.Theselanguagesweredevelopedasspecializedprogramminglanguagesfor

the process-controlcommunity;both aresupportedby graphicaltoolsets. In addi-

tion, both languagesweredesignedfrom the beginningto havea simpleandelegant

syntaxand semantics.Therefore,theselanguageshavebeenat the forefrontof the

static analysisandcodegenerationforcommercialtools. Finally,both languagesalso

havegood,albeit simple,modulesupportwhichwouldenablethemto beusedwith

relativeeasein the FORMpcsprocess.

The primary drawbackof Estereland Lustre is that they weredesignedto be

programminglanguagereplacements.Therefore,manyfeaturesdesirablefor the re-

quirementslevelarenot in the languageor tools (nicelyformatteddocuments,the

ability to adddescriptivecomments,andsoforth).

ThissectionhaspresentedwhichlanguagesFORMpcsmight beappliedto. Cer-

155

tainly, we would like FORMpcs to be able to be appliedto many languagesso

that userscanchoosethe languagethat bestsuits their needs. Nevertheless,not

all languagesarecreatedequal. Languagesthat do not havea builtin modularity

constructhavedifficultiesrepresentingthe product family andstructuring concepts

in FORMpcs,while languageswhichdo havea moduleconstructhavea tendency

to benot understandableby all stakeholdersin the projector they areat too low a

levelof abstraction.In the nextchapterwewill addressthis issueby illustratinghow

a moduleconstructcanbeaddedto RSML-e.

6.3 Summary

This chapter has presented an overview of FORMpcs. FORMpcs represents the inte-

gration of the product family structuring techniques that were presented in Chapter 4,

the overall specification .structure and process structure presented in Chapter 5, as

well as many techniques that were presented by others in previous research. In ad-

dition, in this chapter we have presented a number of ad-hoc structuring techniques

that were introduced in the methodology.

Chapter 7

Module Construct for RSML -e

This chapter presents the final contribution of the dissertation, a module construct

for the specification language RSML -_. As we discussed at the end of the preceding

chapter, reuse and product family structuring in RSML -_ must be accomplished

via error prone and tedious "cut-and-paste" techniques. Nevertheless, RSML -e is

otherwise a good notation for expressing requirements, having many desirable features

such as understandability by all stakeholders, simulation capabilities, and formal

analysis support. Therefore, there is strong motivation to create a module construct

for RSML -e.

First, we will give a high-level overview of the chapter so that the reader may

understand the various pieces of the ,nodule proposal and how they contribute to

achieving the goals that were established for the modules. Next, we move into the

actual description of the module construct itself starting with the general syntax and

usage, and moving on to placing modules within the state-hierarchy, the functional

module reference syntax, initial values for modules, and module interfaces as imports.

Finally, we present a summary of the module proposal at the end of the chapter.

7.1 Overview

The incorporation of a module construct in RSML -¢ allows for full support of the

FORMpcs process. In addition, modularity construct has the potential to signifi-

156

157

ASW_REQ

)Threshold

Altitude

']Altitude_Quality

"] DOl_Status

\

DOI Status

ASW_Failed

J

Figure 7.1: The ASW_REQ module, interface diagram

cantly shrink the size of large specifications, and opens up the possibility of perform-

ing verification of parts of systems rather than entire systems, potentially making

analysis and conceptual understanding of specifications much simpler. Thus, the

addition if a module construct to RSML -e has many advantages.

When adding a module construct to RSML -e, several goals must be achieved.

First, the module will be the unit of reuse within a specification. Second, the module

construct must enable (or be amenable) to the kinds of reuse that will enable analysts

to develop specifications for product families and other structuring techniques in

FORMpcs. Third, the module must support current and future analysis methods.

Finally, we would also like, as much as possible, to keep the language simple --

to minimize the number of concepts necessary to create and explain an RSML -_

specification.

In order to be a unit of reuse, a strict module interface must be established and

the requirements on the environment of the module be stated explicitly. A graphical

representation of a slightly simplified ASW REQ interface is shown in Figure 7.1.

If a state variable that exists inside of the ASW_REQ module may reference state

variables outside of the ASW_REQ module then that breaks the encapsulation of

the module. Such a module would not be able to be reused in a new context unless

the new context provided the same state variables that were referenced outside the

158

ASW_REQmoduleastheoriginalcontext.Therefore,werestrictthe statevariables

insideof a moduleto referencingonlyotherentitiesinsideof themoduleandelements

of the module'sinterface.This allowsa moduleto be movedfrom onecontext (or

specification)to anotherwithout fear of breakingthe functionality and is key to

enablingreuse.

Similarly,state variablesoutside of the module's borders may not access entities

inside of the ASW_REQ module. If they did, then it would be impossible to replace

the module's implementation with an alternate implementation. The capability to

do just that is important for product families where we might like to establish an

interface for an algorithm or behavior and have each family member choose which

algorithm to use. The ASW family does just that with the altitude voting algorithms

(discussed in Section 7.6, see Figure 7.3).

As we discussed in the previous chapter, sometimes it is useful to have different

behaviors underneath various degraded functionality modes. The modules provide

a mechanism for providing a clear grouping of functionality for a particular mode.

Furthermore, a module might be parameterized to function with different tolerances

and thereby be capable of acting as several different degraded modes depending on

its instantiation. Thus, the capability of a module instance to have a parent variable

is essential in implementing some of the structuring techniques in FORMpcs. We

discuss module instances as children of state variables more thoroughly in Section 7.3

and 7.4.

Finally, we would like to have a simple semantics for the language. The modules

provide a convenient means to create building blocks of functionality that would

otherwise be required to be included in the language definition itself. To make these

smaller, building block-style modules easier to use we have introduced the functional

module syntax of Section 7.5.

159

7.2 General Usage

As discussedin Chapter3, an RSML-e specificationcanbe thought of asa relation

from the inputs (as set by the input interfaces) to the outputs (those variables send

out by the output interfaces). Each state variable in an RSML -_ specification contains

an assignment relation that represents a piece of the overall relation computed by the

specification.

Similarly, a module may be thought of as a relation between the imported vari-

ables and the exported variables. Nevertheless, simply providing a relation from the

imports to the exports does not allow a module to be computed: we must provide

an assignment relation for the imports. Thus, when a module is used, or instanti-

ated, within the context of an RSML -_ specification then (1) we must provide an

assignment relation for all the module's imports, and (2) the module instance pro-

vides a piece of the overall relation represented by the specification. In a sense, a

module instance may be thought of as just another piece of the relation, albeit a

larger aggregate than a state variable.

Modules in RSML -e consist of several parts:

• The interface part of the module defines which values are imported into the

module and which values are visible to the externally (or exported).

• The definition part of the module defines the encapsulated functionality, or the

"secret," of the module. The definition part includes the assignment relation

of all the exported state variables and it also may contain other state variables

which are used in computing the module's exports.

• The instance part of the module defines how the module is used within the

specification. The instance determines how the imports to the module are to

160

be providedby the instantiatingscope(i.e., the assignmentrelationsof the

imports).

Wemakea distinctionbetweenthesethreeparts for goodreason.The interface

of a modulemay besharedby severalmoduledefinitions;this is donefor the ASW

altitude voting algorithmslater in this chapter.This is similar to abstractinterface

inheritancein object-orientedterms. The moduledefinition part maybe instanti-

atedmultiple times,with eachtime providingdifferentassignmentrelationsfor the

importedvariables(thus,a moduledefinitionis a kind of "template" for a module

instance).This is similar to instantiatinga classin object-orientedterms.

As mentionedabove,modulesdefinea scope.Within the moduledefinition,the

only variablesthat canbeaccessiblearethe importedvariablesof the module,the

exportedvariablesof the moduleand other variablesdefinedwithin the module.

Similarly,at the scopein whichthe moduleis instantiated,the only variableswhich

will beaccessibleareimportedvariables(whichmustbeprovidedbythe instantiating

scope)andthe exportedvariables.The sameis true for macrosandfunctions;those

macrosandfunctionsthat aredeclaredwithin themoduleareaccessibleonly within

the moduleand thosethat aredeclaredoutsidethe modulearenot accessibleinside

it. Finally, the simulationtime (currentlygivenspecialtreatment)will nowbe the

sameasanyothervariableandwill thushaveto be importedinto eachmodulethat

desiresto useit.

The moduleconstructfor RSML-e will havea globalscopefor all types,module

interfacedeclarations,and moduledefinitions. However,the userwill be able to

declaregenerictypes,similar to templatesin C++, within the modules.A generic

type mechanismis necessaryto allowRSML-e beableto definemodulesthat will

adequatelyreplacePREV_VALUE,PREV_ASSIGN,etc. This is discussedin more

detail in Section7.5.

161

The simplestusageof modulesis whenthe interfaceis usedas an anonymous

componentof the moduledefinition. For example,the moduleencapsulatingthe

REQrelationof the ASW might look like the following.

TYPE_DEF AltitudeQualitylype { Good, Bad }

TYPE_DEF 0n0ffType { On, Off }

MODULE ASW_REQ :

INTERFACE :

IMPORT MON_Altitude : INTEGER

EXPECTED_MIN :-2000

EXPECTED_MAX : 50000

UNITS : ft

END IMPORT

IMPORT MON_Altitude_Quality : AltitudeQualityType

END IMPORT

IMPORT MON_DOI_Status : 0n0ffType

END IMPORT

EXPORT CON_DOI_Status : 0n0ffType

END EXPORT

EXPORT CON_ASW_Failed : Boolean

END EXPORT

IMPORT_CONSTANT Threshold : INTEGER

EXPECTED_MIN : 0

EXPECTED_MAX : 8192

UNITS : ft

END IMPORT_C0NSTANT

END INTERFACE

DEFINITION :

In here, we have the REQ part of the ASW spec.

Here, we can only reference IMPORTs, EXPORTs and

other variables, macros, and functions declared

within the definition.

However, we can access the AltitudeQualityType,

162

and other types declared outside of the module.

*/

END DEFINITION

END MODULE

Now that the definition of the module is created, we can use it as many times

as desired in the specification. In this case, we probably only want one ASW_REQ,

but in other cases, we will use the module definition to "stamp out" many copies

of a particular module definition. Each of these module instances must say how all

the imports are assigned by the scope in which the instance is declared. For the

ASW_REQ module, the module instance declaration is given below.

MODULE_INSTANCE ASW_KEO_Instance : ASW_REQ

PARENT : NONE

MON_Altitude := IN_Altitude

MON_Altitude_Quality := IN_Altitude_Quality

MON_DOI_Status := IN_DOI_Status

Threshold := 2000

END MODULE_INSTANCE

These expressions defined the assignment relation for the imported variables. One

view the expressions as simply an assignment relation with one clause, i = e if TRUE,

where ii s the imported variable and e is the expression

As a second example, in the FGS specification there is a left and a right FGS.

One way to model this situation might be to define an FGS module that would then

be instantiated several times. For example,

MODULE FGS :

INTF/_FACE :

/*

FGS imports and exports are defined here

,/
END INTEKFACE

163

DEFINITION :

/*
State variables, Export definitions, and other entities

defining the behavior of the FGS are defined here

*/
END DEFINITION

END MODULE

MODULE_INSTANCE LeftFGS : FGS

PARENT : NONE

This module instance defines that assignment relation for

the imports of the left side FGS

*/

END MODULE_INSTANCE

MODULE_INSTANCE RightFGS : FGS

PARENT : NONE

This module instance defines the assignment relation for

the imports of the right side FGS.

*/

END MODULE_INSTANCE

Note that FGS module may be instantiated any number of times. For example, if we

wanted a center FGS in addition to the Left and Right, we could very easily do this

by simply adding another MODULE_INSTANCE block to the above.

We can see from the examples above that the module instance definition includes

a PAKENT clause. This allows a module instance to be placed as a child underneath a

state variable in the instantiating scope. Exactly how this is done and what it means

for a module to be placed under a state variable is explained in the next section.

164

7.3 Module Instances Within the Hierarchy

As mentioned earlier, each state variable and module instance in an RSML -e speci-

fication is a piece of the overall relation that is computed by the specification. When

we say that a state variable is a child of another state variable in RSML -e that is

a statement that the child variable is only relevant when the parent variable has a

particular value; that is, we do not care what the value of the child variable is if the

parent does not have the appropriate value and the RSML -_ semantics state that the

value of such a variable is UNDEFINED.

This view extends naturally to module instances, which are really just a larger

aggregate of the overall specification. For example, the FGS has a Flight_Director

variable that governs whether or not the FGS shall produce outputs controlling the

aircraft (this can be equal to 'On' or 'Off'). On way that the FGS might be modeled

this way if the Flight_Director state machine was placed at the top level and the

behavior for the FGS were place beneath the On state as in the example below.

STATE_VARIABLE Flight_Director : 0n0ffType

DEFAULT_VALUE : 0ff

EQUALS On IF OnButtonPressed()

EQUALS Off IF 0ffButtonPressed()

END STATE_VARIABLE

MODULE_INSTANCE FGS : FGS_Functionality

PARENT : Flight_Directo r.0n

/* Define how the imports to FGS_Functionality &re

provided. */

END MODULE_INSTANCE

If the FGS is in the Off state, then any values computed by FGS_Functionality

should not matter; thus, the semantics defines them to be UNDEFINED. In more

detailed terms, the declaration of a 'child' module instantiation at location X is the

165

sameasdirectly declaringthe module'stop-levelvariablesaschildstate variablesof

X.

As a secondexample,considerthe degradedmodesof functionality in the ASW.

For eachvalueof ASW_System_Modea moduleis instantiated that representsthe

behaviorof the ASW in that mode. Belowwehavereproducedthe top-levelmode

that controlswhichmoduleis active.

STATE_VARIABLE ASW_System_Mode_P5 :

VALUES : {Startup, Normal0perating, Degraded,

PARENT : NONE

Failed, Reset}

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION NormalOperating TO Reset IF MON_Reset_P5

TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalOperating TO Degraded IF

EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF

DURATION (MON_Altitude_Qua lity_P5 = Valid, 0 S, Clock) > 1MIN

TRANSITION Reset TO NormalOperating IF

DURATION(PRE(ASW_System _Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

7.4 Initial Values

A state machine is usually defined with an initial configuration, a set of states, and

a set of transitions. Not surprisingly, in RSML -e an initial configuration is also

166

necessary.Currently,this initial configurationis suppliedby the userin the form

of INITIAL_VALUEclausessuppliedfor eachinput variableand state variable. The

current initial configurationis static and specifiedcompletelyby the userof the

language.

Thismethodof determiningtheinitial configurationhasprovento betroublesome.

First, it makesit difficult to reorganizethestatehierarchy.Consider the simple state

hierarchy in Figure 7.2. At the top of the hierarchy, there is the state variable X,

that can take on values 'a', 'b', or 'c'. X has two children, Y1 and Y2. Y1 exists

under the value 'a' of X and Y2 exists under the value 'b'. Because the initial value

of X is equal to 'a', we must choose an initial value for Y1 (which is 'd' in the figure).

However, because the initial value of X is not equal to 'b,' the initial value of Y2 is

required to be UNDEFINED. This applies transitively to Z1 and Z2.

A minor change in the organization of the state hierarchy can, thus, cause major

changes in the initial configuration of the machine. Suppose, for example, that the

initial value of X was changed from 'a' to 'b.' Then, we would be required to specify

initial values for Y2, Z1, and Z2 whereas no initial values had been specified before.

We may experience similar difficulties when moving state variable Y2 underneath a

different parent variable.

This property presents particularly difficult issues for the modules. Recall from

the previous section that a module instance may be placed under a state variable and

that when this is done all the top-level state variables inside the module essentially

become children of that variable. Unfortunately, there is no way to know what an

encapsulated state variable's initial value should be. This is because whether or

not the initial value should be UNDEFINED or one of the state variable's values is

potentially dependent on the parent of the module instance. However, the initial

value would be specified in the module definition; therefore, it is possible to have

167

X :{a, b, c}
Initial_Value:a

a

/
Y1 : {c, d, e}

Initial_Value:d

b

\
Y2 : {e, f, g}
Initial_Value:
UNDEFINED

/2
e g

/
zl : {h, i,J}

Initial_Value:
UNDEFINED

\
Z2 : {k, I, m}
Initial_Value:
UNDEFINED

Figure 7.2: Initial Values of State Variable

168

conflicting demands as to what the initial value of an encapsulated state variable

should be for module definitions that are instantiated several times under different

parent state variables. Clearly, this is not a workable situation.

Nevertheless, we must have some way to determine an initial value for all the

variables in the specification. And, this method must not break the encapsulation

of the modules. Therefore, instead of an initial value, it would be better for state

variables to have a notion of a default value. Input variables would retain an initial

value but all state variables would be determined by evaluating their assignment

relations as if they had been UNDEFINED in the previous step. This allows the initial

configuration of the specification to be computed rather than statically specified and

solves the above problems. The default value would not be dependent on context,

so the state variable (or module instance) could function correctly at any position in

the state variable hierarchy.

7.5 Functional Module Syntax

In the above examples, modules have been used to encapsulate relatively large por-

tions of the RSML -e specification. These large-scale building blocks can then be

assembled to form the overall specification.

Modules can also be viewed as much smaller building blocks; this view is common

in the data-flow language Lustre [34]. When used in this way, we can leverage the

power of the module construct to replace some complex language features with module

implementations and thereby simplify the underlying language semantics.

For example, the semantics of the PREV_VALUE and PREV_ASSIGN expressions

are complex and it is difficult to prove properties about them. Currently, the formal

semantics of RSML -e states that the entire history of variable assignments is recorded,

along with the time of assignment. RSML -_ provides three expressions to access

169

the variablehistory lists: PREV_STEP,PREV_VALUE,and PREV_ASSIGN.In

practice,specifierstendnot to usePREV_VALUEandPREV_ASSIGN,findingthem

both too complexand too restrictive. Also, to determinethe PREV_STEPvalueof

a variable,it is necessaryto checkwhetherthe variablewasassignedin the current

step.

Furthermore,anytranslationsfromRSML-e to other languagesmustaccountfor

thesecomplexexpressionsin the translation;expressionswhichmanydesiredtarget

languages,e.g.,SMV [75,87l,donot havein their semantics.Usingthemodules,we

canexpressthe sameconcepts,but with a simplersemanticsand translation.

The only problemis oneof syntax: it is inconvenientto be requiredto declare

a namedmoduleinstancefor eachtime that wedesireto useoneof thesesortsof

modules.Therefore,modulesthat do not import moduleinterfacesand haveonly

oneexport canbe thought of as "functionswith state." We providean alternative

syntaxfor thesetypesof modules,similar to that providedby Lustre, that is in the

styleof a functioncall: ModuleBodyType(exprl,expr2,..., exprN).

Although this syntax is only availableto moduleswith one output, it is quite

usefulfor definingexpressionslike: DURATION, PREV_VALUE,PREV_ASSIGN,

etc. As we indicatedabove,this syntaxallowsus to simplify the languageseman-

tics significantlywith respectto theseconstructswhilesimultaneouslyincreasingthe

expressiveness.
In thenextversionof RSML-e,theonlyvaluesfor variableswhichwill beavailable

are the valueat the beginningof the step,or PRE(X), and the valueat the endof

thestep(or currentvalue)whichwill be referencedasit is now. Insteadof recording

histories,only the valueof a variablefrom the previousstepand its current value

needberecorded.Thisapproachissimilarto manyotherlanguagessuchasSCR[43],

Lustre [34],Esterel[8[,Z [1021,SMV [75,87],and manymore.

170

Usingjust thesetwoconstructs,wecandefinemodulesto samplethe valuestream

of a variableat arbitrary points. This mechanismprovidesboth a formallysimpler

andmoreflexibleschemefor recordingvariablehistories.Forexample,the following

illustratesthe constructionof a PREV_VALUEmodule.

MODULE PREY_VALUE :

INTERFACE :

/* Since the PREV_VALUE module should be able to operate on

many different types of variables, it has a declared

generic type. Values of generic type in RSML-e can be

compared for equality and inequality, but arithmetic

operations are not allowed

*/

GENERIC_TYPE G

/* The import T is the variable that we want to sample */

IMPORT Variable : G

END IMPORT

/* The import InitialValue is the initial value of the

result of the PREY_VALUE module */

IMPORT_C0NSTANT InitialValue : G

END IMPORT_CONSTANT

/* The export PreviousValue gives the result of the

PREV_VALUE module */

EXPORT PreviousValue : G

END EXPORT

END INTERFACE

DEFINITION :

/* This defines the assignment relation for the Previous-

Value exported variable. We can see that it is initially

set equal to the InitialValue import. Then, if the

value changes, the value of PreviousValue is updated.

*/

EXPORT PreviousValue :

171

DEFAULT : InitialValue

EQUALS PKE(PreviousValue) IF PKE(PreviousValue) = Variable

EQUALS PRE(Variable) IF PRE(PreviousValue) != Variable

END EXPORT

END DEFINITION

END MODULE

This implementation of PREV_VALUE provides the same functionality as in the

current production version of the tools. Suppose that we had a variable, X of which

we wanted the previous value. We could simply write PREV_VALUE(X, UNDEFINED).

Currently, times are integral in the current formal semantics of RSML -_. Times

are recorded along with each variable assignment and are used for computing all of

the PREV expressions. Of course, the times are useful for their own sake; they can

be used to determine how long a variable has held a particular value, for instance.

Nevertheless, this integration of times into the variable history is a mistake for the

following reasons: (1) it is unnecessary for many variables and (2) the time expressions

that are derivable from this scheme are not very flexible. Furthermore, with modules

being able to describe PREV_VALUE and PREV_ASSIGN expressions better than

the current variable histories, there is little reason to keep variable histories around.

Appendix A gives the definition of the other standard modules that we have

defined and are meant to be used with any RSML -_ specification under the new

version of the language.

7.6 Module Interfaces as Imports

Each module will have one and only one interface that defines the boundaries of the

module. A module's interface may be declared separately as a named entity (like a

type) and, therefore, several modules may share the same interface. This capability

might be used, for example, to define a number of different tracking, hysteresis, or

172

error correctingbehaviors.Furthermore,an interfacemay import other interfaces.

An imported interfaceactslike a "slot;" anymodulewhichsupportsthe imported

interfacemaybepluggedin by the instantiatingscope.This makesit possible,for

example,to encapsulatealgorithmsandleavethechoiceof which particular algorithm

to use to the enclosing scope of the module.

Why might we like to do this? Consider the ASW example defined earlier. Now,

we wish to refine our REQ model of the ASW to REQ' so that we can add the IN'

and OUT' relations. However, the first problem that we encounter is that for our

family of ASW we have both analog altimeters which only give above and below the

threshold and digital altimeters which give a number for the altitude. Furthermore,

suppose that the different aircraft in our product family have a different number

of altimeters. For example, a commercial jet may have two analog and two digital

altimeters whereas a personal aviation craft may only have one of each.

To complicate matters even more, different customers demand different algorithms

for determining, from a variety of altitude data, whether or not we are above or below

the threshold value. One customer wants the altitude to be considered "below" when

at least one altimeter reads below; another customer wants all of the altimeters to be

below before it is declared; finally, a third customer wants a majority of the altimeters

to be below before the altitude is declared below.

We can deal with this kind of complexity by refining the REQ relation so that the

ASW_REQ' module imports the AltitudeVoter interface. Then, the enclosing scope

may choose which implementation of AltitudeVoter satisfies the particular customer's

requirements. This is given in textual format below and graphically in Figure 7.3.

MODULE ASW_REQ_Prime :

INTERFACE

IMPORT INTERFACE AltitudeVoter

END IMPORT

173

AltitudeVoter

,Thtesho4d

Num____ak>BAIt

_a_UtD
8elow'l_msho_

/_ak>g_Qu_KM]

NumotDi_aU_

D_g_a_n

D_atQul_fl

3 Implementations <

"1AIIBelow

(AlUtudeVoter)

J

I_UmyCneSogow_

AltltudeVoter) J >

(MajocityBelow _]
V_["'u°'v°"]J

I ASW_REQ'
Thrmhold

Choose one
AJtitudeVo(el DOI_SlaUl

DOI 51atus A_W Failed

Figure 7.3: The ASW_REQ' model illustrating the utility of nested interface defini-

tions

/* Other imports and exports of ASW_REQ here */

END INTEKFACE

DEFINITION :

SLOT_INSTANCE VotedAltitude : AltitudeVoter

/* Inside of ASW_KEQ, we instantiate the module

that was plugged in so that we can use the

imports and exports of the voting algorithm

in the KEQ relation

*/

END SLOT_INSTANCE

END DEFINITION

END MODULE

The full specification of the individual altitude voting algorithms may be found

in Appendix C.

7.7 Conclusion

In this chapter, we have presented the essentials of the module additions to the next

version of RSML -e. This module construct will provide RSML-ewith the ability to

174

fully supportthe FORMpcsprocessaswellasprovidingspecifierswith manymore

options in organizingspecificationsin RSML-e, a cleanerRSML-e semantics,and

the possibilityof newanalysistechniquesbasedon the modulestructure.

Chapter 8

Conclusion and Future Directions

This dissertation has visited a number of different topics, from structuring of product

families in Chapter 4 to a methodology for safety-critical process-control systems in

Chapters 5 and 6, to the addition of a module construct to RSML -e in Chapter 7.

In this final chapter, we take a step back and revisit how the different pieces of the

work connect with one another. We also look to the future to see in which directions

the work presented in the dissertation is expected to progress.

8.1 Conclusions

The goal of the work presented here was to reduce some major barriers to industrial

acceptance of formal specification techniques. Of course, achieving industrial accep-

tance of formal methods is not something that may be addressed within the scope

of one doctoral dissertation. But specifically, we wanted provide guidance on how to

construct formal specifications and to make it easier to develop a formal specification

for a family of products so as to facilitate reuse.

The dissertation has three main contributions: (1) the development of structuring

techniques for formal requirements specifications, including family structuring tech-

niques, (2) the addition of the module construct to RSML -e, and (3) the integration

of this work with existing work to form a comprehensive methodology for developing

formal specifications of process-control systems.

175

176

Wepresentedhowthe the contributionsof this work,while they mayseemto be

fromsomewhatunrelatedareas,fit intoanoverallframework(first showninFigure1.1

andnowgivenagainin Figure8.1). Theframeworkhelpedto organizethedissertation

and wewill useit hereto reviewthe informationthat wascovered.

Webeganin Chapter4 bydiscussingthemostgeneralandfundamentalcontribu-

tionsof the dissertation:thosein productfamilystructuring.As webeganto lookat

structuringthe specificationsfor productfamilies,it becameclearthat currentwork

in product familiesdid not havea clearseparationbetweenthe requirements for a

product line and the design and implementation of the product line. The structuring

technique in Chapter 4 allows for this separation - this work first appeared at the

Fifth International Requirements Engineering conference [106]. Furthermore, it is

important to point out that this work is applicable to all software systems, not just

the safety-critical process-control systems of interest to this dissertation.

In the next chapter, we started to build the foundation for what would eventually

become our methodology for process-control systems. This chapter primarily contains

the early work on process and structure that was presented in [109, 104]. Then, in

Chapter 6, we have given the practitioner's view of the methodology, detailing the

various phases and activities.

Chapter 6 also contains a number of different smaller contributions that were

made as the methodology was developed. For example, the classification scheme for

the different types of commonly encountered monitored and control variables, and the

structuring method to deal with failure modes and degraded modes of functionality.

The methodological work presented in Chapters 5 and 6 is applicable to many different

specification languages and we gave examples of a number of them at the end of

Chapter 6.

Finally, in Chapter 7 we have given a proposal for the next version of RSML -e,

177

Product Family

\

Figure 8.1: Framework of Contributions. Bubbles with a Bold outline indicate areas

of contribution by this dissertation; bubbles with a grey background indicate areas

where significant research results have been achieved.

178

includinghowto add a moduleconstructto RSML-_ that will better support the

FORMpcsmethodology.

Work suchasthe researchpresentedin this dissertationis inherentlydifficult to

evaluate.Noeasyexperimentscanberun to validatethework;and,longtermstudies

(i.e.,lastingseveralyears)cannotbedonein thescopeofdoctoralwork. Furthermore,

corporationsarenot generallywilling to havetheir ownfull-time employeesadopt a

newand unprovenmethodologyor techniquessoevaluationin an industrialsetting

provesto be a challenge.Nevertheless,it is important for someevaluationof the

work to be done,so what kind of evaluationand validationwasdoneon the work

presentedhere?

Oneof thebestwaysto evaluateprocessandmethodologicalworkis to publishit

sothat othersin the fieldcancritiqueandreviewit. All of theearlyandfoundational

workof this dissertationhasbeenpublishedin top conferencesand/or journalsthat

arerelatedto the topic. Feedbackfrom thesevenueshasbeenuniformlypositive.

Second,wehavebeensuccessfulat evaluatingthesetechniquesin an industrial

settingdespitethe difficultiesinvolvedin doingso.Throughthe Critical SystemsRe-

searchGroup'spartnershipwith Rockwell-Collins,manyof the techniquespresented

in this dissertationhavebeenevaluatedandusedon their family of flight guidance

systems.In addition,the author personallyevaluatedthe techniquesduringa sum-

mer study at Medtronic, wherethe methodologyand structuringtechniqueswere

appliedto a familyof implantiblepacemakersanddefibrillators.The resultsof both

of theseexperienceshavebeenpositiveandhavevalidatedthe proposedtechniques.

Unfortunately,detailsof theseevaluationscannotbe madepublic due to the pro-

prietary and sensitivenature of the systemsdevelopedwithin both Medtronicand

Rockwell-Collins.

In summary,in thisdissertationwehavedevelopeda numberof structuringtech-

179

niquesandanoverallmethodologyfor process-controlsystemsthat shouldallowthese

techniquesto achievea new levelof acceptancein industry. Furthermore,wehave

addedamoduleconstructto the languageRSML-e that will allowRSML-e to better

support the aforementionedmethodologyandtechniques.Finally, weareconfident

that thesetechniquesareusableby industryandmakesignificantcontributionsto the

field dueto their positivereviewsfrom leadersin the field, successfulpublicationin

leadingconferencesandjournals,andsuccessfulapplicationto real-worldindustrial-

sizedproblemsin two separateorganizations.

8.2 Future Directions

There are many avenues of future directions for the work presented in this dissertation.

The most immediate are given in Figure 8.1. Generally, the future work may be

broken down into the same directions as the dissertation; thus, future work is possible

in product families, the methodology, and the additions RSML -e.

In the product family area, there is work still to be done on establishing a sepa-

ration of concerns between the product family requirements and the product family

design and implementation. As the first white bubble in Figure 8.1 shows, additional

work is needed in how to elicit the structure of a product family. Current techniques

do not provide guidance on how to discover the dimensions of the product family and

our work in this area is preliminary.

The second product family bubble listed in Figure 8.1 is family structure patterns.

While we have provided a structuring technique for product lines, there must be

patterns in product families that can be identified (similar and analogous to the work

that has been done by the software architectures). These common patterns can then

be used accross many similar product families. Furthermore, this work will have a

strong relationship to the research being done in architectural patterns.

180

Alongthe methodologyaspectof Figure8.1,additionalad-hocstructuringtech-

niquescanbedevelopedad-nauseumasmorepatternsof specificationlanguageuse

becomeknown.Also,asshownin thelastwhitebubblealongthemethodologyaspect,

wemayliketo adda sectionto themethodologythat specificallymentionspatternsof

reusein thespecificationdomain.Finally,themethodologyshouldbe further refined

onmoreindustrialsizedcasestudiesandthenpublishedasa textbooksothat it can

gainwideaudience.

The final aspectof contribution shownin Figure 8.1 is the future work with

RSML-e.

In this dissertation,wehaveprovideda basicmoduleconstructthat meetsthe

needsof FORMpcs. In the future, it will probablybe desirableto add somekind

of propertyspecificationlanguageto themoduleinterfaces(the first white bubblein

thefigure).Thiswouldallowtheuserto specifyend-to-endpropertieson themodule

that couldthenbeverifiedformally.Furthermore,propertiesalreadyverifiedabout

sub-modulescouldbeusedin the verificationof propertieson the enclosingmodule.

The secondwhite bubblein the figure alongthe RSML-e aspectshowsthat it

wouldbeniceif the moduleconstructsupportedtheobjectorientednotionin amore

full-featuredway.Currently,weallowinterfacesasimports,but it wouldbe idealto

allowfor a notionof inheritanceamongmodulesin RSML-_.

Finally, we havea specificationof the arrayconceptfor RSML-_ that is not

yet fully completedthat wouldcomplementour workwith the modules.This array

constructneedsto be addedto the languagesothat wecancompletethe work in

elminatingcomplexexpressionsfrom the languageandsothat it is easierto specify

largesystemsthat are likely to makeuseof the arrayconstruct.

In summary,there is muchthat couldbe donein the future basedon the work

presentedin this dissertation. All aspectsof the research- product families,the

181

methodology,andRSML-e- containareasfor futureresearch.

[11

[21

[a]

[4]

[51

[61

[7]

[8]

[9]

Bibliography

Activmedia robotics website.

http://www.activrobots.com/.

Makers of the Pioneer robot.

R. Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie

Mellon University, May 1997.

R. Allen and D. Garlan. A formal basis for architectural connection. A CM

Transactions on Software Engineering and Methodology, 6(3):213-249, July
1997.

Mark Ardis, Nigel Daley, Daniel Hoffman, and Harvey Sly. Software product

lines: A ease study. Software Practice and Experience, 2000. To Appear.

Mark A. Ardis and David M. Weiss. Defining families: The commonality analy-

sis. In Nineteenth International Conference on Software Engineering (ICSE'97),

pages 649-650, 1997.

L. Baum, M. Becker, L. Geyer, and G. Molter. Mapping requirements to

reusable components using design spaces. In The Fourth International Con-

ference on Requirements Engineering (ICRE'O0), June 2000.

Lothar Baum, Lars Geyer, Georg Molter, Steffen Rothkugel, and Peter Sturm.

Architecture-centric software development based on extended design spaces.

In Development and Evolution of Software Architectures for Product Families:

The Second International Workshop on Development and Evolution of Software

Architectures for Product Familes (ARES), number 1429 in Lecture Notes in

Computer Science, pages 197-204. Springer, February 1998.

G_rard Berry and Georges Gonthier. The Esterel synchronous programming

language: Design, semantics, implementation. Science of Computer Program-

ming, 19(2):87-152, 1992.

P. Binns, M. Engelhart, M. Jackson, and S. Vestal. Domain-specific software

architectures for guidance, navigation, and control. International Journal of

Software Engineering and Knowledge Engineering, 6(2), 1996.

182

183

[10]B. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs,

N J, 1981.

[11] Barry Boehm. A spiral model of software development and enhancement. IEEE

Computer, 21(5):61-72, May 1988.

[12] Jan Bosch. Design and Use of Software Architectures: Adopting and Evolving
a Product-Line Approach. Addison-Wesley, 2000.

[13] K.H. Britton, R.A. Parker, and D.L. Parnas. A procedure for designing abstract
interfaces for device interface modules. In Fifth International Conference on

Software Engineering, 1981.

[14] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1):14-23, March 1986.

[15] Lisa Brownsword and Paul Clements. A case study in successful product line
development. Technical Report CMU/SEI-96-TR-016, Software Engineering

Institute, Carnegie-Mellon University, October 1996.

[16] Grady H. Jr. Campbell, Stuart R. Faulk, and David M. Weiss. Introduction

to synthesis. Technical Report INTRO-SYNTHESIS-PROCESS-90019-N, Soft-

ware Productivity Consortium, Herdon, VA, 1990.

[17] Paul C. Clements. A survey of architecture description languages. In Pro-
ceedings of the Eighth International Workshop on Software Specification and

Design, March 1996.

[18] James Coplien, Daniel Hoffman, and David Weiss. Commonality and variability
on software engineering. IEEE Software, 15(6):37-, November/December 1998.

[19] David A. Cuka and David M. Weiss. Specifying executable commands: An
example of FAST domain engineering. Technical report, Lucent Techonologies,

unknown. Submitted to Transactions on Software Engineering.

[20] David Dikel, David Kane, Steve Ornburn, William Loftus, and Jim Wilson. Ap-

plying software product-line architecture. IEEE Computer, 30(8):49-55, August

1997.

[21] Tom Dolan, Ruud Weterings, and J.C. Wortman. Stakeholders in software-

system family architectures. In Frank van der Linden, editor, Development and
Evolution of Software Architectures for Product Families: Second International

ESPRIT ARES Workshop, number 1429 in Lecture Notes in Computer Science,

pages 172-187. Springer, February 1998.

184

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[3o]

[31]

[32]

Debra M. Erickson. Structuring formal requirements specifications for reuse:

A mobile robotics case study. Masters Project, University of Minnesota, April
2000.

Stuart R. Faulk. Product-line requirements specification (PRS): An approach

and case study. In Proceedings of the Fifth IEEE International Symposium on

Requirements Engineering (RE'01), pages 48-55, August 2001.

John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools

and Techniques in Software Development. Cambridge University Press, 1998.

D. Garlan, R. Allen, and J. Ockerbloom. Exploting style in architectural design

environments. In Proceedings SIGSOFT'9_: Foundations on Software Engineer-
ing, pages 175-188, December 1994.

David Garlan. A introduction to the Aesop system, July

http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop_
overview.ps.

1995.

Nancy G.Leveson. Intent specifications:an approach to building human-centered
specifications.

Hassan Gomaa. Object oriented analysis and modeling for families of systems

with uml. In The Sixth International Conference on Software Reuse (ICSR),

number 1844 in Lecture Notes in Computer Science, pages 89-99. June, June
2000.

M. Gorlick and A. Quilici. Visual programming in the large verses visual pro-

gramming in the small. In Proceedings of the IEEE Symposium on Visual
Languages, pages 137-144, October 1994.

M. Gorlick and R. Razouk. Using Weaves for software construction and anal-

ysis. In Proceedings of the Thirteenth International Conference on Software
Engineering (ICSE'91), pages 23-34, May 1991.

The VDM Tool Group. The IFAD VDM ++ toolbox user manual. Technical

Report, IFAD-VDM-43. Available from IFAD, Forskerparken 10, 5230 Odense
M, Denmark, September 1997.

Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A refer-

ence model for requirements and specifications. IEEE Software, 17(3):37-43,
May/June 2000.

185

[33] NeerajK. Gupta,Lalita J. Jagadeesan,EleftheriosE. Koutsofios,andDavidM.
Weiss.Auditdraw: Generatingauditsthe FASTway. In Third IEEE Inter'na-

tional Symposium on Requirements Engineering (RE'97), pages 188-197, 1997.

[34] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous

datafiow programming language lustre. Proceedings of the IEEE, 79(9):1305-

1320, September 1991.

[35] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Klower

Academic Press, 1993.

[36] D. Harel. Statecharts: A visual formalism for complex systems. Science of

Computer Programming, 8(3):231-274, June 1987.

[37] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-

Trauring, and M. Trakhtenbrot. Statemate: A working environment for the

development of complex reactive systems. IEEE Transactions on Software En-

gineering, 16(4):403-414, April 1990.

[38] David Harel and Amnon Naamad. The statemate semantics of statecharts.
ACM Transactions of Software Engineering and Methodology, 5(4):293 - 333,

October 1996.

[39] Mats P. E. Heimdahl and Nancy G. Leveson. Completeness and consistency
in hierarchical state-base requirements. IEEE Transactions on Software Engi-

neering, 22(6):363-377, June 1996.

[40] Mats P.E. Heimdahl, Jeffrey M. Thompson, and Barbara J. Czerny. Specifi-
cation and analysis of intercomponent communication. IEEE Computer, pages

47-54, April 1998.

[41] Mats P.E. Heimdahl, Jeffrey M. Thompson, and Steven P. Miller. Product
families, formality, and reuse: A guide to the FORMpcs method. Technical

report, University of Minnesota, 2002.

[42] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR*: A toolset for specify-

ing and analyzing requirements. In Proceedings of the Tenth Annual Conference

on Computer Assurance, COMPASS 95, 1995.

[43] C. L. Heitmeyer, B. L. Labaw, and D. Kiskis. Consistency checking of SCR-style

requirements specifications. In Proceedings of the Second IEEE International

Symposium on Requirements Engineering, March 1995.

186

[44]

[45]

[46]

[47]

[48]

[49]

[5o]

[51]

[52]

[53]

C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. Automated consistency check-

ing of requirements specifications. A CM Transactions on Software Engineering
and Methodology, 5(3):231-261, July 1996.

K.L. Heninger. Specifying software requirements for complex systems: New

techniques and their application. IEEE Transactions on Software Engineering,
6(1):2-13, Januaray 1980.

K.L. Heninger, J.W. Kallander, J.E. Shore, and D.L. Parnas. Software Require-

ments for the A-7e Aircraft. Technical Report 3876, Naval Research Laboratory,
Washington, D.C., November 1978.

Michael Jackson. Software Requirements and Specifications. ACM Press and
Addison-Wesley, 1995.

Michael Jackson. The world and the machine. In Proceedings of the 1995

Internation Conference on Software Engineering, pages 283-292, 1995.

Michael Jackson. Problem Frames: Analyzing and Structuring Software Devel-

opment Problems. ACM Press and Addison-Wesley, 2001.

Michael Jackson and Pamela Zave. Domain descriptions. In Proceedings of

the IEEE International Symposium on Requirements Engineering, pages 56-64,
1992.

Michael Jackson and Pamela Zave. Deriving specifications from requirements:

An example. In Proceedings of the Seventeenth International Conference on

Software Engineering (ICSE'95), pages 15-24, May 1995.

Matthew S. Jaffe, Nancy G. Leveson, Mats P.E. Heimdahl, and Bonnie E.

Melhart. Software requirements analysis for real-time process-control systems.

IEEE Transactions on Software Engineering, 17(3):241-258, March 1991.

Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software Architec-

ture for Product Families: Principles and Practice. Addison-Wesley, 2000.

[54] C. Kiczales. Aspect-oriented programming. ACM Computing Surveys, 28(4es),
December 1996.

[55] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier,

and J. Irwin. Aspect-oriented programming. In Proceedings of the Eleventh

European Conference on Object-Oriented Programming (ECOOP'97), number

1241 in Lecture Notes in Computer Science, pages 220-242. Springer-Verlag,
June 1997.

187

[56] GregoKiczales,Erik Hilsdale,Jim Hungunin,Mik Kersten,JeffreyPalm,and
William G. Griswold.An overviewof aspectj. In Proceedings of the Fifteenth

European Conference on Object-Oriented Programming, number 2072 in Lecture

Notes in Computer Science. Springer-Verlag, June 2001.

[57] Juha Kuusela and Juha Savolainen. Requirements engineering for product fam-
ilies. In Proceedings of the Twenty-Second International Conference on Software

Engineering (ICSE'O0), pages 60-68, June 2000.

[58] W. Lam. Achieving requirements reuse: A domain-specific approach from avion-

ics. Journal of Systems and Software, 38(3):197-209, 1997.

[59] W. Lam. Creating reusable architectures: Initial experience report. ACM
SIGSOFT Software Engineering Notes, 22(4):39-43, 1997.

[60] W. Lam. Developing component-based tools for requirements reuse: A process

guide. In Eighth International Workshop on Software Technology and Engineer-

ing Practice (STEP'97), pages 473-483, 1997.

[61] W. Lain, J.A. McDermid, and A.J. Vickers. Ten steps towards systematics

requiremens reuse. Requirements Engineering, 2(2):120-113, 1997.

[62] W. Lam and B.R. Whittle. A taxonomy of domain-specific reuse problems and
thier resolutions - version 1.0. ACM SIGSOFT Software Engineering Notes,

21(5):72-77, September 1996.

[63] Thomas G. Lane. Studying software architecture through design spaces and
rules. Technical Report CMU/SEI-90-TR-18, Software Engineering Institute,

Carnegie Mellon University, November 1990.

[64] Nancy G. Leveson. Sample tcas intent specification.

[65] Nancy G. Leveson, Mats P.E. Heimdahl, and Jon Damon Reese. Designing

Specification Languages for Process Control Systems: Lessons Learned and

Steps to the Future. In Seventh A CM SIGSOFT Symposium on the Foundations

on Software Engineering, volume 1687 of LNCS, pages 127-145, September

1999.

[66] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. Requirements

Specification for Process-Control Systems. IEEE Transactions on Software En-

gineering, 20(9):684-706, September 1994.

188

[67]

[68]

[69]

[7o]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Robyn R. Lutz. Safety analysis of requirements for a product family. In 1998

International Conference on Requirements Engineering (ICRE'98), 1998.

Robyn R. Lutz. Toward safe reuse of product family specifications. In Sympo-
sium on Software Reusability (SSR '99), 1999.

Robyn R. Lutz. Extenting the product family approach to support safe reuse.

Journal of Systems and Software, 53:207-217, 2000.

J. Magee, N. Dulay, and J. Kramer. Specifying distributed software architec-

tures. In Proceedings of the Fifth European Software Engineering Conference
(ESEC'95), pages 137-153, September 1995.

J. Magee and J. Kramer. Dynamic structure in software architectures. In

Proceedings of the A CM SIGSOFT'96: Fourth Symposium on the Foundations

of Software Engineering, pages 3-14, October 1996.

Jeff Magee, Jeff Kramer, and Dimitra Giannakopoulou. Behaviour analysis of

software architectures. In First Working IFIP Conference on Software Archi-

tecture (WISCSA1), Feburary 1999.

F. Maraninchi and ¥. R_mond. Applying formal methods to industrial cases:

The language approach (the production-cell and mode-automata). In Proe. 5th

International Workshop on Formal Methods for Industrial Critical Systems,
April 2000.

Florence Maraninchi and Yann R6mond. Mode-automata: About modes and

states for reactive systems. In Proc. European Symposium on Programming,
1998.

Kenneth L. McMillan. Symbolic

dence Berkeley Laboratories Version.

cad.eecs.berkeley.edu/-kenmcmil/smv.

Model Verifer (SMV) Ca-

Available at http://www-

N. Medvidovic, P. Oreizy, J.E. Robbins, and R.N. Taylor. Using object-oriented

typing to support architectural design in the C2 style. In Proceedings of the

ACM SIGSOFT'96: Fourth Symposium on the Foundations of Software Engi-
neering, pages 24-32, October 1996.

N. Medvidovic, D.S. Rosenblum, and R.N. Taylor. A language and environment

for architecture-based software development and evolution. In Proceedings of

the Twenty-first International Conference on Software Engineering (ICSE'99),

pages 44-53, Los Angeles, CA, May 1999.

189

[78] NenadMedvidovicand DavidS.Rosenblum.Domainsof concernin software
architecturesandarchitecturedescriptionlanguages.In Proceedings of the 1997

USENIX Conference on Domain-Specific Languages, October 1997.

[79] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE Transactions

on Software Engineering, 26(1):70-93, January 2000.

[80] Sandra K. Miller. Aspect-oriented programming takes aim at software com-

plexity. IEEE Computer, 34(4):18-21, April 2001.

[81] Steven P. Miller. Specifying the mode logic of a flight guidance system in
CoRE and SCR. In Proceedings of the Second Workshop on Formal Methods in

Software Practice, pages 44-53, 1998.

[82] Steven P. Miller. Modeling software requirements for embedded systems. Tech-

nical report, Advanced Technology Center, Rockwell Collins, Inc., 1999. In

Progress.

[83] Steven P. Miller and Alan C. Tribble. Extending the four-variable model to

bridge the system-software gap. In Proceedings of the Twentith IEEE/AIAA

Digital Avionics Systems Conference (DASC'01), October 2001.

[84] M. Moriconi, X. Qian, and R.A. Riemenschneider. Correct architecture re-
finement. IEEE Transactions on Software Engineering, 21(4):356-372, April

1995.

[85] M. Moriconi and R.A. Riemenschneider. Introduction to SADL 1.0: A language
for specifying software architecture hierarchies. Technical Report SRI-CSL-97-

01, Carnegie Mellon University, March 1997.

[86] Gleb Naumovich, George S. Avrunin, Lori A. Clarke, and Leon J. Osterweil.

Applying static analysis to software architectures. In Proceedings of the Sixth

European Software Engineering Conference (ESEC'97), number 1301 in Lecture

Notes in Computer Science, pages 77-93. Springer-Verlag, 1997.

[87] NuSMV: A New Symbolic Model Checking. Available at

http://http://nusmv.irst.itc.it/.

[88] D.L. Parnas. On the criteria to be used in decomposing a system into modules.

Communications of the ACM, 15:1053-1058, December 1972.

190

[89]

[9o]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[1001

[101]

[102]

D.L. Parnas. On the design and development of program families. IEEE Trans-

actions on Software Engineering, 2(1):1-9, March 1976.

D.L. Parnas. Designing software for ease of extension and contraction. In Third

International Conference on Software Engineering, 1978.

D.L. Parnas and P.C. Clements. A rational design process: How and why to

fake it. IEEE Transactions on Software Engineering, 12(2):251-257, 1986.

D.L. Parnas, P.C. Clements, and D.M. Weiss. The modular structure of complex

systems. IEEE Transactions on Software Engineering, 11(3):256-266, 1985.

D.L. Parnas and J. Madey. Functional documentation for computer systems

engineering. Science of Computer Programming, 25(1):41-61, 1991.

Praxis Critical Systems Limited. REVEAL: A Keystone of Modern Systems

Engineering, issue 1.1 edition, July 2000.

R. Prieto-Diaz. Domain analysis for reusability. In Proceedings of COMP-

SAC'87, pages 23-29, 1987.

R. Prieto-Diaz. Domain analysis: An introduction. ACM SIGSOFT Software

Engineering Notes, 15(2):47-54, 1990.

W.W. Royce. Managing the development of large software systems: Concepts

and techniques. In Proceedings of WESCON, August 1970.

Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.

Young, and Gregory Zelesnik. Abstractions for software architecture and tools

to support them. IEEE Transactions on Software Engineering, 21(4):314-335,
April 1995.

Software Productivity Consortium.

Handbook, 1993. SPC-92060-CMC.
Consortium Requirements Engineering

Software Productivity Consortium Reuse Adoption Guidebook, version 01.00.03

edition, November 1992. SPC-92051-CMC.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 1992.

191

[103]A.

[104]

[105]

[lO6]

[107]

[lO8]

[109]

[11ol

[111]

[1121

Terry, R. London, G. Papanagopoulos, and M. Devito. The

ARDEC/Teknowledge architecture description language (ArTek). Technical

report, Teknowledge Federal Syst. and U.S. Army Armament Research, Devel-

opment, and Eng. Center, July 1995. Version 4.0.

Jeffrey M. Thompson. NIMBUS: A framework for static analysis and simulation

of system-level inter-component communication. Master's thesis, University of

Minnesota, December 1999.

Jeffrey M. Thompson and Mats P.E. Heimdahl. An integrated development

environment prototyping safety critical systems. In Tenth IEEE International

Workshop on Rapid System Prototyping (RSP) 99, pages 172-177, June 1999.

Jeffrey M. Thompson and Mats P.E. Heimdahl. Extending the product family

approach to support n-dimensional and hierarchical product lines. In The Fifth

IEEE International Symposium on Requirements Engineering, August 2001.

Jeffrey M. Thompson and Mats P.E. Heimdahl. Structuring product family

requirements for n-dimensional and hierarchical product lines. Requirements

Engineering Journal, 2002. (Submitted).

Jeffrey M. Thompson, Mats P.E. Heimdahl, and Debra M. Erickson. Structuring

formal control systems specifications for reuse: Surviving hardware changes. In

Proceedings of the Fifth NASA Langley Formal Methods Conference (Lfm2000),

2000.

Jeffrey M. Thompson, Mats P.E. Heimdahl, and Steven P. Miller. Specification

based prototyping for embedded systems. In Seventh ACM SIGSOFT Sym-

posium on the Foundations on Software Engineering, number 1687 in LNCS,

pages 163-179, September 1999.

Jeffrey M. Thompson, Michael W. Whalen, and Mats P.E. Heimdahl. Require-

ments capture and evaluation in NIMBUS: The light-control case study. Journal

of Universal Computer Science, 6(7):731-757, July 2000.

W. Tracz. LILEANNA: A parameterized programming language. In Proceedings

of the Second International Workshop on Software Reuse, pages 66-78, Lucca,

Italy, March 1993.

W. Tracz. Dssa (domain specific software architecture) pedagogical example.

ACM SIGSOFT Software Engineering Notes, 20(3):49-62, 1995.

192

[1131

[114]

[115]

[1161

[117]

[1181

[119]

[120]

W. Tracz, L. Coglianese, and P. Young. A domain specific software architec-

ture engineering process outline. A CM SIGSOFT Software Engineering Notes,
18(2):40-49, 1993.

S. Vestal. MetaH programmer's manual. Technical report, Honeywell Technol-
ogy Center, Minneapolis, MN, April 1996. Version 1.09.

Steve Vestal. Metah programmer's manual. Technical Report 1.1.4, Honeywell

Technology Center, 3660 Technology Drive, Mpls, MN 55418, 1993.

David M. Weiss. Defining families: The commonality analysis. Technical report,

Lucent Technologies Bell Laboratories, 1000 E. Warrenville Rd, Naperville, IL
60566, 1997.

David M. Weiss and Chi Tau Robert Lai. Software Product Line Engineering:
A Family-Based Software Development Process. Addison-Wesley, 1999.

Michael W. Whalen. A formal semantics for RSML -e. Master's thesis, Univer-
sity of Minnesota, May 2000.

Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.
Prentice-Hall, 1996.

Pamela Zave. Four dark corners of requirements engineering. A CM Transactions

on Software Engineering and Methodology, 6(1):1-29, January 1997.

Appendix A

Standard Modules for RSML

In the new tool, the user will be able to specify files to be included (much like the

include directives in C++ or Java). This will allow a large and complex specification

to be divided into modules and allow these modules to be stored in separate files.

This will give a much finer grained version control than what we currently have with

a single monolithic file and it will also make it much easier to reuse and recombine

the module definitions.

This section defines the standard module include file to be used with the new

version of RSML -e. This file will be included at the bottom of most RSML -e speci-

fications and the users will have the opportunity to use all of the predefined module

definitions found here.

MODULE PREV :

INTERFACE :

GENERIC_TYPE G

IMPORT val : G

END IMPORT

IMPORT CONSTANT InitialValue : G

END IMPORT

IMPORT cond : Boolean

END IMPORT

IMPORT CONSTANT size : integer

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

END IMPORT

193

194

EXPORT previousValue : G

END EXPORT

END INTERFACE

DEFINITION :

STATE_VARIABLE internal_array : [i TO size] 0F G

PARENT : NONE

ASSIGNMENT [I] :

DEFAULT_VALUE : InitialValue

EQUALS val IF cond

EQUALS PRE(internal_array[1]) IF N0T (cond)

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS internal_array[t his-l] IF cond

EQUALS pre(internal_arr ay[this]) IF NOT (cond)

END ASSIGNMENT

END STATE_VARIABLE

EXPORT previousValue :

PARENT : NONE

EQUALS internal_array[size] IF TRUE

END EXPORT

END DEFINITION

END MODULE

MODULE PREV_VALUE :

INTERFACE :

GENERIC_TYPE G

IMPORT Variable : G

END IMPORT

IMPORT CONSTANT InitialValue : G

END IMPORT

EXPORT PreviousValue : G

END EXPORT

195

END INTERFACE

DEFINITION :

EXPORT PreviousValue :

PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS PRE(PreviousValue) IF PRE(PreviousValue) = Variable

EQUALS PKE(Variable) IF PRE(PreviousValue) != Variable

END EXPORT

END DEFINITION

END MODULE

MODULE VALUEAT_TIME :

INTERFACE :

GENERIC_TYPE G

IMPORT SpecifiedTime : TIME

END IMPORT

IMPORT CurrentValue : G

END IMPORT

IMPORT CONSTANT InitialValue : G

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT Val : G

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Val :

PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS Pre(Val) IF Clock != SpecifiedTime

EQUALS CurrentValue IF Clock = SpecifiedTime

END EXPORT

196

END DEFINITION

END MODULE

INTERFACE BooleanMonitor :

IMPORT Expr : BOOLEAN
END IMPORT

IMPORT CONSTANT InitialValue : BOOLEAN

END IMPORT

EXPORT Result : BOOLEAN

END EXPORT

END INTERFACE

MODULE WHEN : BooleanMonitor

DEFINITION :

EXPORT Result :

PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS True IF

TABLE

PRE(Expr) : F ;

Expr : T ;
END TABLE

EQUALS False IF

TABLE

PRE(Expr) : T * ;

Expr • * F ;
END TABLE

END EXPORT

END DEFINITION

END MODULE

MODULE WHEN_NOT : BooleanMonitor

DEFINITION :

EXPORT Result :

PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS True IF

TABLE

197

PRE(Expr) : T ;

Expr : F ;

END TABLE

EQUALS False IF

TABLE

PRE(Expr) : F * ;

Expr • * T ;

END TABLE

END EXPORT

END DEFINITION

END MODULE

INTERFACE GenericMonitor :

GENERIC_TYPE G

IMPORT Expr : G

END IMPORT

EXPORT Result : BOOLEAN

END EXPORT

END INTERFACE

MODULE CHANGED : GenericMonitor

DEFINITION :

EXPORT Result :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS Pre(Expr) != Expr

END EXPORT

END DEFINITION

END MODULE

MODULE UNCHANGED : GenericMonitor

DEFINITION:

EXPORT Result :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS PRE(Expr) = Expr

END EXPORT

198

END DEFINITION

END MODULE

INTERFACE TimeMonitor :

IMPORT Expr : BOOLEAN

END IMPORT

IMPORT CONSTANT InitialValue : TIME

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT Result : TIME

END EXPORT

END INTERFACE

MODULE TIME_CHANGED : TimeMonitor

DEFINITION :

EXPORT Result :

PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS Clock IF PRE(Expr) != Expr

EQUALS PRE(Result) IF PRE(Expr) = Expr

END EXPORT

END DEFINITION

END MODULE

MODULE TIME_WHEN : TimeMonitor

DEFINITION :

EXPORT Result :

PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS Clock IF

TABLE

PRE(Expr) : F ;

Expr : T ;

END TABLE

EQUALS PRE(Result) IF

TABLE

PRE(Expr) : T * ;

Expr • * F ;

END TABLE

END EXPORT

199

END DEFINITION

END MODULE

MODULE TIME_WHEN_NOT : TimeMonitor

DEFINITION :

EXPORT Result :

PARENT : NONE

DEFAULT_VALUE : InitialValue

EQUALS Clock IF

TABLE

PKE(Expr) : T ;

Expr : F ;

END TABLE

EQUALS PKE(Result) IF

TABLE

PKE(Expr) : F * ;

Expr • * T ;

END TABLE

END EXPORT

END DEFINITION

END MODULE

MODULE DURATION : TimeMonitor

DEFINITION :

STATE_VARIABLE InitialTime :TIME

PARENT : NONE

DEFAULT_VALUE : UNDEFINED

EQUALS Clock IF

TABLE

DEFINED(PRE(InitialTime)) : F ;

PKE(Expr) : F ;

Expr : T ;

END TABLE

EQUALS PKE(InitialTime) IF

TABLE

DEFINED(PKE(InitialTime)) : T * ;

PKE(Expr) • * T ;

END TABLE

EQUALS UNDEFINED IF Expr = False

END STATE_VARIABLE

EXPORT Result :

PARENT : NONE

200

DEFAULT_VALUE : InitialValue

EQUALS Clock - InitialTime IF DEFINED(InitialTime)

EQUALS InitialValue IF NOT (DEFINED(InitialTime))

END EXPORT

END DEFINITION

END MODULE

INTERFACE BooleanResultArr ayAggregats :

IMPORT conditions : [1 TO size] OF BOOLEAN

END IMPORT

IMPORT CONSTANT size : INTEGER

END IMPORT

EXPORT result : BOOLEAN

END EXPORT

END INTERFACE

MODULE FOKALL : BooleanResultArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [i TO size] OF BOOLEAN

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : size

ASSIGNMENT [1] :

EQUALS conditions[this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS True IF

TABLE

internal_array[this-l]

conditions[this]

END TABLE

EQUALS False IF

TABLE

internal_array[this-l]

conditions[this]

END TABLE

END ASSIGNMENT

: T ;

: T;

201

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

MODULE EXISTS : BooleanResultArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [I TO size] OF BOOLEAN

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : size

ASSIGNMENT [I] :

EQUALS conditions[this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS True IF

TABLE

internal_array[this-l]

conditions[this]

END TABLE

EQUALS False IF

TABLE

internal_array[this-l]

conditions[this]

END TABLE

END ASSIGNMENT

: F;

: F ;

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

202

INTERFACE IntegerResultArr ayAggregate :

IMPORT conditions : [I TO size] OF BOOLEAN

END IMPORT

IMPORT CONSTANT size : INTEGER

END IMPORT

EXPORT result : BOOLEAN

END EXPORT

END INTERFACE

MODULE FIRST_INDEX : IntegerResultArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [I TO size] OF INTEGER

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : size

ASSIGNMENT [I] :

EQUALS conditions[this] IF conditions[this]

EQUALS UNDEFINED IF NOT (conditions[this])

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS this IF

TABLE

DEFINED(internal_array[this-l]) : F ;

conditions[this] : T ;

END TABLE

EQUALS internal_array[t his-l] IF

TABLE

DEFINED(internal_array[this-l]) : T * ;

conditions[this] • * T ;

END TABLE

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

203

END DEFINITION

END MODULE

MODULE LAST_INDEX : IntegerResultArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : size

ASSIGNMENT [size] :

EQUALS conditions [this] IF conditions [this]

EQUALS UNDEFINED IF NOT (conditions[this])

END ASSIGNMENT

ASSIGNMENT [i TO size-l] :

EQUALS this IF

TABLE

DEFINED(internal_array[this+l]) : F ;

conditions[this] : T ;

END TABLE

EQUALS internal_array[t his+l] IF

TABLE

DEFINED(internal_array[this+l]) : T * ;

conditions[this] " * T ;

END TABLE

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[l]

END EXPORT

END DEFINITION

END MODULE

MODULE COUNT : IntegerResultArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [I TO size] OF INTEGER

PARENT : NONE

UNITS : NA

204

EXPECTED_MIN : i

EXPECTED_MAX : size

ASSIGNMENT [1] :

EQUALS I IF conditions[this]

EQUALS 0 IF NOT (conditions[this])

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS internal_array[t his-l] + I IF conditions[this]

EQUALS internal_array[t his-l] IF NOT (conditions[this])

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

INTERFACE IntegerMathArray Aggregate :

IMPORT vals : [I TO size] of INTEGER

UNITS : NA

EXPECTED_MIN : UNDEFINED

EXPECTED_MAX : UNDEFINED

END IMPORT

IMPORT CONSTANT size : INTEGER

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

END IMPORT

EXPORT result : INTEGER

UNITS : NA

EXPECTED_MIN : UNDEFINED

EXPECTED_MAX : UNDEFINED

END EXPORT

END INTERFACE

2O5

MODULE SUM : IntegerMathArrayhggregate

DEFINITION :

STATE_VARIABLE internal_array : [1 TO size] OF INTEGER

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

ASSIGNMENT [I] :

EQUALS vals [this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS vals[this] + internal_array[this-l]

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

MODULE AVERAGE : IntegerMathArrayAggregate

DEFINITION :

EXPORT sumValue :

PARENT : NONE

EQUALS SUM(vals, size)/size

END EXPORT

END DEFINITION

END MODULE

MODULE MAXIMUM : IntegerMathArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [I TO size] OF INTEGER

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

206

ASSIGNMENT [I] :

EQUALS vals [this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS vals[this] IF vals[this] > internal_array[this-l]

EQUALS internal_array[t his-l] IF vals[this] <= internal_array[this- I]

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

MODULE MINIMUM : IntegerMathArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [l TO size] OF INTEGER

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

ASSIGNMENT [13 :

EQUALS vals [this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS vals[this] IF vals[this] < internal_array[this-I]

EQUALS internal_array[t his-l] IF vals[this] >= internal_array[this- I]

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

207

INTERFACE RealMathArrayAggregate :

IMPORT vals : [1 TO size] of REAL

UNITS : NA

EXPECTED_MIN : UNDEFINED

EXPECTED_MAX : UNDEFINED

END IMPORT

IMPORT CONSTANT size : REAL

UNITS : NA

EXPECTED_MIN : I

EXPECTED_MAX : UNDEFINED

END IMPORT

EXPORT result : REAL

UNITS : NA

EXPECTED_MIN : UNDEFINED

EXPECTED_MAX : UNDEFINED

END EXPORT

END INTERFACE

MODULE SUM_REAL : RealMathArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [I TO size] OF REAL

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

ASSIGNMENT [i] :

EQUALS vals [this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS vals[this] + internal_array[this-I]

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

208

END DEFINITION

END MODULE

MODULE AVERAGE_REAL : RealMathArrayAggregate

DEFINITION :

EXPORT sumValue :

PARENT : NONE

EQUALS SUM(vals, size)/size

END EXPORT

END DEFINITION

END MODULE

MODULE MAXIMUM_REAL : RealMathArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [I TO size] OF REAL

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

ASSIGNMENT [I] :

EQUALS vals [this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS vals[this] IF vals[this] > internal_array[this-I]

EQUALS internal_array[t his-l] IF vals[this] <= internal_array[this- i]

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

MODULE MINIMUM_REAL : RealMathArrayAggregate

DEFINITION :

STATE_VARIABLE internal_array : [I TO size] OF REAL

209

PARENT : NONE

UNITS : NA

EXPECTED_MIN : 1

EXPECTED_MAX : UNDEFINED

ASSIGNMENT [I] :

EQUALS vale [this]

END ASSIGNMENT

ASSIGNMENT [2 TO size] :

EQUALS vale [this] IF vals [this] < internal_array[this-l]

EQUALS internal_array[t his-l] IF vale[this] >= internal_array[this- i]

END ASSIGNMENT

END STATE_VARIABLE

EXPORT result :

PARENT : NONE

EQUALS internal_array[size]

END EXPORT

END DEFINITION

END MODULE

Appendix B

The ASW REQ Model (Phase 5)

INCLUDE "asw-alltypes. nimb us"

MODULE ASW_KEQ_P5 :

INTERFACE :

EXPORT C0N_DOI_P5 : DOIControlledType

Purpose : &*L This variable represents the ASW's

commanded status of the Device of Interest (DOI). L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\itemEOn:] Indicates that the DOI is commanded to be On. The DOI

is commanded to be on when the aircraft enters the target region

for turning the DOI on, the DOI is not already on,

and the ASW is not inhibit ied.

\item[0ff:] Indicates that the D0I is commanded to be Off. The

D0I is commanded to be off when the aircraft leaves the target

region and after a certain period of time has passed. If this

time is \RUndefined, then the ASW will never turn the D0I Off.

\item[Uncommanded:] Indicates that the D0I is not commanded by the

ASW. This C0N_DOI variable will be equal to Uncommanded in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

\end{quote}

L*&

Issues : &*L

\begin{myitemize}

\item If the aircraft leaves the target area and the DOI is on,

but was {\em not} commanded to be on by the ASW, should the ASW

turn it off?

\end{myitemize}

L*&

END EXPORT

210

211

EXPORT CON_Failure_P5 : Boolean

Purpose : &*L This variable represents the ASW's indication of

whether or not it has failed to the external world. It is

potentially displayed to the pilot and/or used by other subsystems

on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW has failed. The ASW is

considered to be failed if it attempts to turn on the DOI, but the

D0I does not turn on after a certain timeout period.

\item[False:] Indicates that the ASW has not failed. The ASW is

considered to be operating normally if none of the failure

conditions are true.

\end{mydescription}

\end{quote}

L*&

END EXPORT

IMPORT MON_Altitude_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW's idea of what the

altitude of the aircraft is. It is related to the Altitude_Quality

variable. L*a

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[Precision:] We will know the altitude to within $\pm I05 ft.

\end{mydescription}

\end{quote}

L*a

END IMPORT

IMPORT MON_Altitude_Qua lity_P5 : AltitudeQualityType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the

Altitude of the aircraft is. L*&

END IMPORT

212

IMPORT MON_DOI_P5 : 0n0ffType_P5

Purpose : &*L This variable indicates the monitored status of the

DOI. The D0I can be turned on or off by other devices/systems on

board the aircraft, so the ASW needs an accurate accounting of the

status of the D0I L*&

Interpretation : &*L

\begin{quote}

kbegin{mydescription}

\item[On:] Indicates that the DOI is currently on.

\item[Off:] Indicates that the DOI is currently off.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Reset_P5 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be

reset or not. In a step where the ASW is reset, this variable will

have the value true. In all others, this variable will have the

value false. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW as been reset.

\item[False:] Indicates that the ASW has not been reset.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Inhibit_P5 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

213

DOI.

\item[False:] Indicates that the ASW has not been inhibited;

ASW will behave as specified by other requirements.

\end{mydescription}

\end{quote}

L*&

the

END IMPORT

IMPORT CONSTANT Threshold_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family

member when the REQ module is instantiated. It is the altitude

at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P5 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED MAX : I0 s

Purpose : &*L This constant will be defined by each family

member. It is the length of time after which the ASW will

declare a failure if there is not valid altitude. L*&

F__D IMPORT

IMPORT CONSTANT DOI_Timeout_P5

UNITS : NA

EXPECTED_MIN : 1 s

EXPECTED_MAX : 5 s

: Time

Purpose : &*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the DOI does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P5 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is

specified by the decision model for each family member. L*&

214

END IMPORT

IMPORT CONSTANT GoBelowAction_P5 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : a*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

END INTERFACE

DEFINITION :

STATE_VARIABLE ASW_System_Mode_P5 :

VALUES : {Startup, Normal0perating,

PARENT :NONE

Degraded, Failed, Reset}

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

behavior. L*&

DEFAULT_VALUE : Startup

215

TRANSITION Normal0perating TO Reset IF MON_Reset_P5

TRANSITION Degraded TO Reset IF MON_Reset_P5

TRANSITION NormalOperating T0 Degraded IF

EpisodeMonitor_P5 = QualifyingEpisode

TRANSITION Degraded TO Normal0perating IF

DURATION (MON_Altitude_Qua lity_P5 = Valid, 0 S, Clock) > I MIN

TRANSITION Reset T0 Normal0perating IF

DUKATION(PKE(ASW_System _Mode_P5), 0 s, Clock) >= 0 S

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P5 :

VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}

PAKENT: NONE

Purpose : &*L This simple state variable tracks whether or not

we have met the conditions for being in degraded functionality

mode. Namely, whether or not we have seen two periods of

invalid altitude lasting I second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

TRANSITION NoEpisode TO FirstEpisode IF

DUBATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) > 1S

TRANSITION FirstEpisode T0 QualifyingEpisode IF

TABLE

DUBATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock) > I S : T ;

DUBATION(PKE(EpisodeMon itor_P5) = FirstEpisode) > 1S : T ;

END TABLE

TRANSITION FirstEpisode TO NoEpisode IF

DURATION(PKE(EpisodeMon itor_P5) = FirstEpisode) >= 1MIN

TRANSITION QualifyingEpiso de T0 NoEpisode IF

DURATION(MON_Altitude_Q uality_P5 = Valid, 0 S, Clock) >= 2 MIN

END STATE_VARIABLE

MODULE_INSTANCE ASW_0perating_Mode_P5 : ASW_Operating_Mode_Def_P5

PARENT : ASW_System_Mode_ P5.Normal0perating

ASSIGNMF/NT

216

MON_Altitude_P5

MON_Altitude_Quality_P5

MON_DOI_P5

MDN_Inhibit_P5

Threshold_P5

Invalid Alt_Failure_P5

DOI_Timeout_P5

GoAboveAction_P5

GoBelowAction_P5

GoAboveHyst_P5

GoBelowHyst_P5

DOI_Delay_P5

END ASSIGNMENT

END MODULE_INSTANCE

:= MON_Altitude_P5,

:= MON_Altidue_Quality_P5,

:= MON_D01_P5,

:= MON_Inhibit_P5,

:= Threshold_P5,

:= Invalid_Alt_Failure_P5,

:= DOI_Timeout_P5,

:= GoAboveAction_P5,

:= GoBelowAction_PS,

:= GoAboveHyst_P5,

:= GoBelowHyst_P5,

:=0S

MODULE_INSTANCE ASW_Degraded_Mode_P5 : ASW_Operating_Mode_Def_P5

PAP_ : ASW_System_Mode_ P5.Degraded

ASSIGNMENT

MON_Altitude_P5 := MON_Altitude_P5,

MON_Altitude_Quality_P5 := MON_Altidue_Quality_P5,

MON_DOI_P5 := MON_DOI_P5,

MON_Inhibit_P5 := MON_Inhibit_P5,

Threshold_P5 := Threshold_P5,

Invalid_Alt_Failure_P5 := Invalid_Alt_Failure_P5,

DOI_Timeout_P5 := DOI_Timeout_P5,

GoAboveAction_P5 := GoAboveAction_P5,

GoBelowAction_P5 := GoBelowActionP5,

GoAboveHyst_P5 := GoAboveHyst_P5,

GoBelowHyst_P5 := GoBelowHyst_P5,

DOI_MinDelay_P5 := 2 S,

DOI_MaxDelay_P5 := 6 S

END ASSIGNMENT

END MODULE_INSTANCE

EXPORT CON_DOI_P5 :

PARENT : NONE

DEFAULT_VALUE : Uncontrolled

EQUALS ASW_0perating_Mode_ P5.C0N_DOI_P5

IF ASW_System_Mode_P5 = Normal0perating

EQUALS ASW_Degraded_Mode_P 5.C0N_DOI_P5

IF ASW_System_Mode_P5 = Degraded

EQUALS Uncontrolled IF

TABLE

ASW_System_Mode_P5 = Failed : T * ;

217

hSW_System_Mode_P5 = Reset : * T ;

END TABLE

END EXPORT

EXPORT CON_Failure_P5 :

PARENT : NONE

DEFAULT_VALUE : False

TRANSITION False TO True IF

TABLE

ASW_System_Mode_P5 = NormalOperating : T * ;

ASW_Operating_Mode_P5.C ON_Failure_P5 : T * ;

ASW_System_Mode_P5 = Degraded • * T ;

ASW_Operating_Mode_P5.C ON_Failure_P5 : * T ;

END TABLE

TRANSITION True TO False IF ASW_System_Mode_P5 = Reset

END EXPORT

END DEFINITION

END MODULE

MODULE hSW_OperatingMode_D el_P5 :

INTERFACE :

EXPORT CON_DOI_P5 : DOIControlledType

END EXPORT

EXPORT CON_Failure_P5 : Boolean

END EXPORT

IMPORT MON_Altitude_P5 : INTEGER

END IMPORT

IMPORT MON_Altitude_Quality_P5 : AltitudeQualityType

END IMPORT

IMPORT MON_DOI_P5 : OnOffType_P5

END IMPORT

IMPORT MON_Inhibit_P5 : Boolean

END IMPORT

218

IMPORT CONSTANT Threshold_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P5 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : i0 s

END IMPORT

IMPORT CONSTANT DOI_Timeout_P5 : Time

UNITS : NA

EXPECTED_MIN : I s

EXPECTED_MAX : 5 s

END IMPORT

IMPORT CONSTANT GoAboveAction_P5 : ActionType

END IMPORT

IMPORT CONSTANT GoBelowAction_P5 : ActionType

END IMPORT

IMPORT CONSTANT GoAboveHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT GoBelowHyst_P5 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT DOI_MinDelay_P5 : TIME

Purpose : &*L This parameter to the ASW operating module

determines whether or not we will wait to turn the D0I on. If it

is greater than zero, then we will wait. It represents the

minium waiting time L*&

END IMPORT

IMPORT DOI_MaxDelay_P5 : TIME

219

Purpose : &*L This parameter to the ASW operating module

determines the maximum waiting time that we will stay in a

Delayed action state before giving up and returning to NoAction

L*&

END IMPORT

END INTERFACE

DEFINITION :

EXPORT CON_DOI_P5 :

PARENT : NONE

DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

TABLE

GoBelowAction = TurnOn : T * ;

ActionBelow_P5.PerformAction_P5 : T * ;

GoAboveAction = TurnOn • * T ;

ActionAbove_P5.PerformAction_P5 : * T ;

END TABLE

TRANSITION Uncommanded TO Off IF

TABLE

GoBelowAction = TurnOff : T * ;

ActionBelow_P5.PerformAction_P5 : T * ;

GoAboveAction = TurnOff • * T ;

ActionAbove_P5.PerformAction_P5 : * T ;

END TABLE

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P5 = On, False)

TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P5 = Off, False)

END EXPORT

MODULE_INSTANCE ActionBelow_P5 : DOI_Action_P5

PARENT : NONE

ASSIGNMENT

Direction_P5

ThresholdedAltitude_P5

MinDelay_P5

MaxDelay_P5

AltitudeQuality_F5

ActionOK_P5

:= Down,

:= ThresholdedAlt_P5.Result_P5,

:= DOI_MinDelay_P5,

:= DOI_MaxDelay_P5,

:= MON_AlitudeQuality_P5,

:= DOI_Action_Ok_P5(),

220

Clock

END ASSIGNMENT

END MODULE_INSTANCE

:= Clock

MODULE_INSTANCE ActionAbove_P5 : D01_Action_P5

PARENT : NONE

ASSIGNMENT

Direction_P5 := Up,

ThresholdedAltitude_P5 := ThresholdedAlt_P5.Result_P5,

MinDelay_P5

MaxDelay_P5

AltitudeQuality_P5

Action0K_P5

Clock

END ASSIGNMENT

END MODULE_INSTANCE

:= DOI_MinDelay_P5,

:= DOI_MaxDelay_P5,

:= MON_AlitudeQuality_P5,

:= DOI_Action_0k_P5(),

:= Clock

MACRO DOI_Action_Ok_P5(act IS ActionType) :

TABLE

MON_Inhibit_P5 : F F ;

C0N_Failure_P5 : F F ;

MON_DOI_P5 = On : T * ;

act = 0n : F * ;

MON_DOI_P5 = Off : * T ;

act = Off • * F ;

END TABLE

END MACRO

EXPORT C0N_Failure_P5 :

PAKENT : NONE

DEFAULT_VALUE : False

EQUALS TKUE IF

TABLE

DURATION(AttemptingOn() , 0 S, Clock) > DOI_Timeout_P5

DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P5

DURATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock)

PKE(C0N_Failure_P5) = False

END TABLE

EQUALS FALSE IF

TABLE

DURATION(AttemptingOn() , 0 S, Clock) > DOI_Timeout_P5

DURATION(AttemptingOff(), 0 S, Clock) > DOI_Timeout_P5

DURATION(MON_Altitude_Q uality_P5 = Invalid, 0 S, Clock)

PRE(C0N_Failure_P5) = False

END TABLE

:T***;

:*T**;

:**T*;

"***T;

: F;

: F ;

: F ;

: F ;

221

EXPORT

MACRO AttemptingOn() :

TABLE

MON_DOI_P5 = Off

CON_DOI_P5 = On

END TABLE

F.ND MACRO

: T ;

: T ;

MACRO AttemptingOff() :

TABLE

MON_DOI_P5 = On

CON_DOI_P5 = Off

END TABLE

END MACRO

: T ;

: T ;

MODULE_INSTANCE ThresholdedAlt_P5 : ThresholdedAltitude_P5

PARENT : NONE

ASSIGNMENT

Altitude_P5 := MON_Altitude_P5,

Threshold_P5 := Threshold_P5,

BelowHysteresis_P5 := GoBelowHyst_P5,

AboveHysteresis_P5 := GoBelowHyst_P5

END ASSIGNMENT

END MODULE_INSTANCE

END DEFINITION

END MODULE

MODULE ThresholdedAltitude _P5 :

INTERFACE :

IMPORT Altitude_P5 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P5 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

222

IMPORT CONSTANT AboveHysteresis_P5 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P5 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P5 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Result_P5 :

PARENT : NONE

DEFAULT_VALUE : Above IF

TABLE

DEFINED(Altitude_P5) : T ;

Altitude_P5 > Threshold_P5 : T ;

END TABLE

DEFAULT_VALUE : Below IF

TABLE

DEFINED(Altitude_P5) : T ;

Altitude_P5 <= Threshold_P5 : T ;

END TABLE

DEFAULT_VALUE : UNDEFINED IF N0T (DEFINED(Altitude_P5))

EQUALS Above IF

TABLE

DEFINED(Altitude_P5) : T ;

Altitude_P5 > EffectiveThreshold_P5 : T ;

END TABLE

223

EQUALS Below IF

TABLE

DEFINED(Altitude_P5) : T ;

Altitude_P5 <= EffectiveThreshold_P5 : T ;

END TABLE

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_PS))

END EXPORT

STATE_VARIABLE ApplyHisteresis_P5 :

VALUES : {NoHyst, Above, Below}

PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF

TABLE

DEFINED(Altitude_P5) : T ;

WHEN(Altitude_P5 < Threshold_P5, False) : T ;

END TABLE

TRANSITION NoHyst TO Below IF

TABLE

DEFINED(Altitude_P5) : T ;

WHEN(Altitude_P5 > Threshold_P5, False) : T ;

END TABLE

TRANSITION Above TO NoHyst IF

TABLE

DEFINED(Altitude_P5) : T T ;

WHEN(Altitude_P5 < Threshold_P5 + AboveHysteresis_P5, False) : T * ;

WHEN(Altitude_P5 > Threshold_P5 - BelowHysteresis_P5, False) : * T ;

END TABLE

TRANSITION Below TO NoHyst IF

TABLE

DEFINED(Altitude_P5) : T T ;

WHEN(Altitude_P5 > Threshold_P5 + AboveHysteresis_P5, False) : T * ;

WHEN(Altitude_P5 < Threshold_P5 - BelowHysteresis_P5, False) : * T ;

END TABLE

END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold_P5 : INTEGER

PARENT : NONE

224

UNITS : ft

EXPECTED_MIN : Threshold_P5 - BelowHysteresis_P5

EXPECTEDMAX : Threshold_P5 + AboveHysteresis_P5

DEFAULT_VALUE : Threshold_P5

EQUALS Threshold_P5 + AboveHysteresis_P5

IF ApplyHysteresis_P5 = Above

EQUALS Threshold_P5 - BelowHysteresis_P5

IF ApplyHysteresis_P5 = Below

EQUALS Threshold_P5

IF ApplyHysteresis_P5 = NoHyst

END STATE_VARIABLE

END DEFINITION

END MODULE

MODULE DOI_Action_P5 :

INTERFACE :

IMPORT MinDelay_P5 : TIME

END IMPORT

IMPORT MaxDelay_P5 : TIME

END IMPORT

IMPORT CONSTANT Direction_P5 : UpDownType

END IMPORT

IMPORT TkresholdedAltit ude_P5 : AboveBelowType

END IMPORT

IMPORT AltitudeQuality P5 : AltitudeQualityType

END IMPORT

IMPORT ActionOK_P5 : Boolean

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT PerformAction_P5 : Boolean

225

END EXPORT

END INTERFACE

DEFINITION :

EXPORT PerformAction_P5 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)

END EXPORT

STATE_VARIABLE internal_P5 :

VALUES : {NoAction, Delayed, Perform}

PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction TO Delayed IF

TABLE

MinDelay_P5 > 0 S : T T ;

Action0K_P5 : T T ;

WHEN(ThresholdedAltitud e_P5 = Below) : T * ;

Direction_P5 = Below : T * ;

WHEN(ThresholdedAltitud e_P5 = Above) : * T ;

Direction_P5 = Above • * T ;

END TABLE

TRANSITION NoAction TO Peform IF

TABLE

MinDelay_P5 > 0 S : F F ;

Action0K_P5 : T T ;

WHEN(ThresholdedAltitud e_P5 = Below) : T * ;

Direction_P5 = Down : T * ;

WHEN(ThresholdedAltitud e_P5 = Above) : * T ;

Direction_P5 = Up • * T ;

END TABLE

TRANSITION Delayed TO Perform IF

TABLE

DURATION(PKE(internaI_P 5) IN_STATE Delayed,

0 S, Clock) >= MinDelay_P5

Action0K_P5

AltitudeQuality_P5 = Valid

Direction_P5 = Down

ThresholdedAltitude_P5 = Below

Direction_P5 = Up

:TT;

:TT;

:TT;

:T*;

:T*;

"*T;

226

ThresholdedAltitude_P5 = Above • * T ;

END TABLE

TRANSITION Delayed TO NoAction IF

DURATION(PKE(internaI_P5) IN_STATE Delayed, 0 S, Clock) >= MaxDelay_P5

TRANSITION Perform T0 NoAction IF

DURATION(PRE(internaI_P fi) IN_STATE Perform, 0 S, Clock) >= 0 S

END STATE_VARIABLE

END DEFINITION

END MODULE

INCLUDE "standard-modules. nimbus"

Appendix C

The ASW SOFT Model (Phase 6)

/*L

In this chapter, we add to the REQ specification for the ASW a

specification of the ASW's IN' and OUT' relations. These relations

are developed in a similar way to the REQ relation, but starting out

at a high level and then refining the structure and computation,

finally taking into consideration completeness and error handling

constraints.

For this Phase, we will be defining a number of new modules. The

Altimeters_IN_P6 module will transform the inputs from the digital altimeters

L*/

INCLUDE "asw-alltypes.nimb us"

MODULE Altimeters_IN_P6 :

INTERFACE :

IMPORT CONSTANT NumDigitalAlt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_HAX : I0

END IMPORT

IMPORT CONSTANT NumAnalogAlt_P6 : INTEGER

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : 10

END IMPORT

IMPORT DigialAlt_P6 : [i TO NumDigitalAlt] 0F INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

227

228

IMPORT CONSTANT Threshold_P6 : INTEGER

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

UNITS : ft

EKPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT AnalogAlt_P6 : [1 TO NumAnalogAlt] OF AboveBelowType

END IMPORT

IMPORT DigitalQuality_P6 : [1 TO NumDigitalAlt] OF AltitudeQualityType

END IMPORT

IMPORT AnalogQuality_P6 : [1 TO NumAnalogAlt] OF AltitudeQualityTyp e

END IMPORT

IMPORT INTERFACE AltitudeVoter_P6 :

END IMPORT

EXPORT Altitude_P6 : AboveBelowType

END EXPORT

EXPORT AltitudeQuality_P6 : AltitudeQualityType

END EXPORT

END INTERFACE

DEFINITION :

MODULE_INSTANCE ThresholdedDigital_P6 :

229

[1 TO NumDigitalAlt] OF ThresholdedAltitude_P6

PARENT : NONE

ASSIGNMENT

Altitude_P6

Threshold_P6

AboveHysteresis_P6

BelowHysteresis_P6

END ASSIGNMENT

END MODULE_INSTANCE

:= DigitalAlt_P6,

:= EXTEND Threshold_P6 TO

[I TO NumDigitalAlt] OF INTEGER,

:= EXTEND GoAboveHyst_P6 TO

[I TO NumDigitalAlt] OF INTEGER,

:= EXTEND GoBelowHyst_P6 TO

[I TO NumDigitalAlt] OF INTEGER

SLOT_INSTANCE AltitudeVoter_P6 :

ASSIGNMENT

Num_of_Alt

Altitudes

Qualities

END ASSIGNMENT

END SLOT_INSTANCE

:= NumDigitalAlt_P6 + NumAnalogAlt_P6,

:= ThresholdedDigital_P6.Result_P6 I AnalogAlt_P6,

:= DigitialOuality_P6 I AnalogQuality_P6

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoter_P6.Altitude_P6

EQUALS AltitudeVoter_P6.Al titude_P6

END EXPORT

EXPOKT AltitudeQuality_ P6 :

PARENT : NONE

DEFAULT_VALUE : AltitudeVoter_P6.AltitudeQuality_P6

EQUALS AltitudeVoter_P6.Al titudeQuality_P6

END EXPORT

END DEFINITION

END MODULE

INTERFACE AltitudeVoter_P6 :

IMPORT CONSTANT Num_of_Alt_P6

UNITS : NA

EXPECTED_MIN : 0

EXPECTED_MAX : 50

END IMPORT

: INTEGER

IMPORT Altitudes_P6 : [I TO Num_of_Alt_P6] OF AboveBelowType

23O

END IMPORT

IMPORT Qualities_P6 : [I TO Num_of_Alt_P6]

END IMPORT

EXPORT Altitude_P6 : AboveBelowType

END EXPORT

EXPORT Quality_P6 : AltitudeQualityType

END EXPORT

END INTERFACE

MODULE Alt_and_Quality_P6 :

INTERFACE :

IMPORT Altitude_P6 : AboveBelowType

END IMPORT

IMPORT Quality_P6 : AltitudeQualityType

END IMPORT

EXPORT Result : Alt_and_QualityType

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Alt_and_QualityT ype :

PARENT : NONE

EQUALS Above IF

TABLE

Altitude P6 = Above : T ;

Quality_P$ = Valid : T ;

END TABLE

EQUALS Below IF

TABLE

Altitude_P6 = Below : T ;

Quality_P6 = Valid : T ;

END TABLE

EQUALS Invaid IF Quality_P6 = Invalid

OF AltitudeQualityType

231

END EXPORT

END DEFINITION

END MODULE

MODULE Most_P6 : AltitudeVoZer_P6

DEFINITION :

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : Below

EQUALS Below IF

COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

[i TO Num_of_Alt_P6] OF AltitudeQualityType =

EXTEND Below TO

[i TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

>

COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

[I TO Num_of_Alt_P6] OF Alti%udeQualityType =

EXTEND Above TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

EQUALS Above IF

COUNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType =

EXTEND Below TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

<=

C0UNT(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType =

EXTEND Above T0

[I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6 :

PARENT : NONE

DEFAULT_VALUE : Valid

EQUALS Valid IF

EXiSTS(Qualities_P6 = EXTEND Valid T0

[I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

232

EQUALS Invalid IF

FORALL(Qualities_P6 = EXTEND Invalid T0

[I T0 Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

END DEFINITION

END MODULE

MODULE AnyCrossed_P6 : AltitudeVoter_P6

DEFINITION :

EXPORT Altitude_P6 :

PARENT : NONE

DEFAULT_VALUE : Below

TRANSITION Below TO Above IF

EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType =

EXTEND Above TO

[I T0 Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

TRANSITION Above T0 Below IF

EXISTS(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) T0

[I T0 Num_of_Alt_P6] OF AltitudeQualityType =

EXTEND Below T0

[I T0 Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6 :

PARENT : NONE

EQUALS Valid IF

EXiSTS(Qualities_P6 = EXTEND Valid T0

[I TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

EQUALS Invalid IF

FORALL(Qualities_P6 = EXTEND Invalid T0

[i T0 Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

END EXPORT

233

END DEFINITION

END MODULE

MODULE AllCrossed_P6 : AltitideVoter_P6

DEFINITION :

EXPORT Altitude_P6 :

PAKENT : NONE

DEFAULT_VALUE : Below

TRANSITION Below TO Above IF

FOKALL(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

[I TO Num_of_Alt_P6] OF AltitudeOualityType =

EXTEND Above TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

TKANSITION Above TO Below IF

FOKALL(EXTEND Alt_and_Quality_P6(Altitudes_P6, Qualities_P6) TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType =

EXTEND Below TO

[I TO Num_of_Alt_P6] OF AltitudeQualityType, Num_of_Alt_P6)

END EXPORT

EXPORT Quality_P6 :

PARENT : NONE

EQUALS Valid IF

EXISTS(Qualities_P6 = EXTEND Valid TO

[I TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

EQUALS Invalid IF

FOKALL(Qualities_P6 = EXTEND Invalid TO

[I TO Num_of_Alt] OF AltitudeQualityType, Num_of_Alt)

END EXPORT

END DEFINITION

END MODULE

MODULE Failure_OUT_P6 :

234

INTERFACE :

IMPORT Failure_P6 : Boolean

END IMPORT

IMPORT PulseInterval_P6 : TIME

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT Watchdog_Pulse_P6 • Boolean

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Watchdog_Pulse_P 6 :

PARENT : NONE

DEFAULT_VALUE : false

TRANSITION False TO True IF

TABLE

DURATION(PRE(Watchdog_P ulse_P6) IN_STATE False,

0 S, Clock) >= PulseInterval_P6 : T ;

Failure_P6 : F ;

END TABLE

TRANSITION True TO False IF

DURATION(PRE(Watchdog_P ulse_P6) IN_STATE True, 0 S, Clock) >= 0 S

END EXPORT

END DEFINITION

END MODULE

MODULE ASW_KEO_P6 :

INTERFACE :

235

EXPORT CON_DOI_P6 : DOIControlledType

Purpose : &*L This variable represents the ASW's

commanded status of the Device of Interest (DOI). L_&

Interpretation : &*L

\begin{quote}
\begin{mydescription}

\item[0n:] Indicates that the DOI is commanded to be On. The D0I

is commanded to be on when the aircraft enters the target region

for turning the D0I on, the D0I is not already on,

and the ASW is not inhibit ied.

\item[0ff:] Indicates that the D0I is commanded to be Off. The

D0I is commanded to be off when the aircraft leaves the target

region and after a certain period of time has passed. If this

time is \RUndefined, then the ASW will never turn the DOI Off.

\item[Uncommanded:] Indicates that the DOI is not commanded by the

ASW. This CON\ DOI variable will be equal to Uncommanded in any

step were the ASW does not issue a command to the device of interest.

\end{mydescription}

\end{quote}

L*&

Issues : t*L

\begin{myitemize}

\item If the aircraft leaves the target area and the DOI is on,

but was {\em not} commanded to be on by the ASW, should the ASW

turn it off?

\end{myitemize}

L*&

END EXPORT

EXPORT CON_Failure_P6 : Boolean

Purpose : &*L This variable represents the ASW's indication of

whether or not it has failed to the external world. It is

potentially displayed to the pilot and/or used by other subsystems

on board the aircraft. L$&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the ASW has failed. The ASW is

considered to be failed if it attempts to turn on the DOI, but the

D0I does not turn on after a certain timeout period.

\item[False:] Indicates that the ASW has not failed. The ASW is

considered to be operating normally if none of the failure

236

conditions are true.

\end{mydescription}

\end{quote}

L*&

END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the ASW's idea of what the

altitude of the aircraft is. It is related to the Altitudek_Quality

variable. L*&

END IMPORT

IMPORT MON_Altitude_Qua lity_P6 : AltitudeQualityType

CLASSIFICATION : Monitored

Purpose : &*L This variable represents the quality of the

Altitude of the aircraft is. L*&

END IMPORT

IMPORT MON_DOI_P6 : OnOffType_P6

Purpose : &*L This variable indicates the monitored status of the

DOI. The DOI can be turned on or off by other devices/systems on

board the aircraft, so the ASW needs an accurate accounting of the

status of the DOI L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[On:] Indicates that the DOI is currently on.

\item[Off:] Indicates that the DOI is currently off.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Reset_P6 : Boolean

Purpose : &*L This variable indicates the whether the ASW should be

reset or not. In a step where the ASW is reset, this variable will

have the value true. In all others, this variable will have the

value false. L*&

Interpretation : &*L

\begin{quote}

237

\begin{mydescription}

\item[True:] Indicates that the ASW as been reset.

\item[False:] Indicates that the ASW has not been reset.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT MON_Inhibit_P6 : Boolean

Purpose : &*L This variable is true when the ASW is inhibited and

false otherwise. The value is determined by the user and/or other

systems on board the aircraft. L*&

Interpretation : &*L

\begin{quote}

\begin{mydescription}

\item[True:] Indicates that the operation of the ASW has been

inhibited; the ASW shall not attempt to change the status of the

DOI.

\item[False:] Indicates that the ASW has not been inhibited; the

ASW will behave as specified by other requirements.

\end{mydescription}

\end{quote}

L*&

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

Purpose : &*L This constant will be defined by each family

member when the REQ module is instantiated. It is the altitude

at which the ASW is required to turn on or off the ASW. L*&

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P8

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : 10 s

: Time

Purpose : &*L This constant will be defined by each family

member. It is the length of time after which the ASW will

238

declare a failure if there is not valid altitude. L*&

END IMPORT

IMPORT CONSTANT DOI_Timeout_P6 : Time

UNITS : NA

EXPECTED_MIN : I s

EXPECTED_MAX : 5 s

Purpose : &*L This constant will be defined by each member of

the ASW family to represent the amount of time before the ASW

declares a failure if the D0I does not respond to a command. L*&

END IMPORT

IMPORT CONSTANT GoAboveAction_P6 : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going up. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT C0NSTANT GoBelowAction_PS : ActionType

Purpose : &*L This constant specifies the action that the ASW

will perform when it crosses the Threshold going down. It is

specified by the decision model for each family member. L*&

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

the threshold altitude. L*&

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

Purpose : &*L This defines the hysteresis factor for going above

239

the threshold altitude. L*&

END IMPORT

END INTERFACE

DEFINITION :

STATE_VARIABLE ASW_System_Mode_P6 :

VALUES : {Startup, NormalOperating, Degraded, Failed, Reset}

PARENT : NONE

Purpose : &*L This is the top-level mode of the ASW. If the ASW

were to have a startup mode, etc., we could put those modes as

children of this controlling mode. Currently, we have only two

states, the reset mode which is used for when the reset signal

is received and the operating mode that handles the main

behavior. L*&

DEFAULT_VALUE : Startup

TRANSITION NormalOperating TO Reset IF MON_Reset_P6

TRANSITION Degraded TO Reset IF MON_Reset_P6

TRANSITION Normal0perating TO Degraded IF

EpisodeMonitor_P6 = QualifyingEpisode

TRANSITION Degraded TO NormalOperating IF

DURATION (MON_Altitude_Qua lity_P6 = Valid, 0 S, Clock) > 1MIN

TRANSITION Reset TO Normal0perating IF

DURATION(PRE(ASW_System _Mode_P6), 0 s, Clock) >= 0 S

END STATE_VARIABLE

STATE_VARIABLE EpisodeMonitor_P6 :

VALUES : {NoEpisode, FirstEpisode, QualifyingEpisode}

PARENT : NONE

Purpose : &*L This simple state variable tracks whether or not

we have met the conditions for being in degraded functionality

mode. Namely, whether or not we have seen two periods of

invalid altitude lasting I second or more within 1 minute. L*&

DEFAULT_VALUE : NoEpisode

240

Iq_ANSITION NoEpisode T0 FirstEpisode IF

DURATION(MON_Altitude_Q uality_P6 = Invalid, 0 S, Clock) > I S

TRANSITION FirstEpisode TO QualifyingEpisode IF

TABLE

DURATION(MON_Altitude_Q uality_P6 = Invalid, 0 S, Clock) > i S : T ;

DURATION(PRE(EpisodeMon itor_P6) = FirstEpisode) > I S : T ;

END TABLE

TRANSITION FirstEpisode TO NoEpisode IF

DURATION(PKE(EpisodeMon itor_P6) = FirstEpisode) >= i MIN

TRANSITION QualifyingEpiso de TD NoEpisode IF

DURATION(MON_Altitude_Q uality_P6 = Valid, 0 S, Clock) >= 2 MIN

END STATE_VARIABLE

MODULE_INSTANCE ASW_0perating_Mode_P6 : ASW_0perating_Mode_Def_P6

PAR_T : ASW_System_Mode_ P6.Normal0perating

ASSIGNMENT

MON_Altitude_P6

MON_Altitude_Quality_P6

MON_DOI_P6

MON_Inhibit_P6

Threshold_P6

Invalid_Alt_Failure_P6

DOI_Timeout_P6

GoAboveAction_P6

GoBelowAction_P6

GoAboveHyst_P6

GoBelowHyst_P6

DOI_Delay_P6

END ASSIGNMENT

END MODULE_INSTANCE

:= MON_Altitude_P6,

:= MON_Altidue_Quality_P6,

:= MON_DOI_P6,

:= MON_Inhibit_P6,

:= Threshold_P6,

:= Invalid_Alt_Failure_P6,

:= D01_Timeout_P6,

:= GoAboveAction_P6,

:= GoBelowAction_P6,

:= GoAboveHyst_P6,

:= GoBelowHyst_P6,

:=OS

MODULE_INSTANCE ASW_Degraded_Mode_P6 : ASW_Operating_Mode_Def_P6

PARENT : ASW_System_Mode_ P6.Degraded

ASSIGNMENT

MON_Altitude_P6

MON_Altitude_Quality_P6

MON_DOI_P6

MON_Inhibit_P6

Threshold_P6

Invalid_Alt_Failure_P6

DOI_Timeout_P6

GoAboveAction_P6

GoBelowAction_P6

:= MON_Altitude_P6,

:= MON_Altidue_Quality_P6,

:= MON_DOI_P6,

:= MON_Inhibit_P6,

:= Threshold_P6,

:= Invalid_Alt_Failure_P6,

:= DOI_Timeout_P6,

:= GoAboveAction_P6,

:= GoBelowAction_P6,

241

GoAboveHyst_P6

GoBelowHyst_P6

DOl_MinDelay_P6

DOI_MaxDelay_P6

END ASSIGNMENT

END MODULE_INSTANCE

:= GoAboveHyst_P6,

:= GoBelowHyst_P6,

:= 2 S,

:=6S

EXPORT CON_DOI_P6 :

PARENT : NONE

DEFAULT_VALUE : Uncontrolled

EQUALS ASW_0perating_Mode_ P6.C0N_DOI_P6

IF ASW_System_Mode_P6 = Normal0perating

EQUALS ASW_Dsgraded_Mode_P 6.CON_DOI_P6

IF ASW_System_Mode_P6 = Degraded

EQUALS Uncontrolled IF

TABLE

ASW_System_Mode_P6 = Failed : T * ;

ASW_System_Mode_P6 = Reset : * T ;

END TABLE

END EXPORT

EXPORT CON_Failure_P6 :

PARENT : NONE

DEFAULT_VALUE : False

TRANSITION False TO True IF

TABLE

ASW_System_Mode_P6 = NormalOperating : T * ;

ASW_0perating_Mode_P6.C 0N_Failure_P6 : T * ;

ASW_System_Mode_P6 = Degraded • * T ;

ASW_0perating_Mode_P6.C 0N_Failure_P6 : * T ;

END TABLE

TRANSITION True TO False IF ASW_System_Mode_P6 = Reset

END EXPORT

END DEFINITION

END MODULE

MODULE ASW_0peratingMode_D ef_P6 :

242

INTERFACE :

EXPORT CON_DOI_P6 : DOIControlledType

END EXPORT

EXPORT CON_Failure_P6 : Boolean

END EXPORT

IMPORT MON_Altitude_P6 : AboveBelowType

END IMPORT

IMPORT MON_Altitude_Qua lity_P6 : AltitudeOualityType

END IMPORT

IMPORT MON_DOI_P6 : 0n0ffType_P6

END IMPORT

IMPORT MON_Inhibit_P6 : Boolean

END IMPORT

IMPORT CONSTANT Threshold_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT Invalid_Alt_Failure_P6 : Time

UNITS : NA

EXPECTED_MIN : 2 s

EXPECTED_MAX : I0 s

END IMPORT

IMPORT CONSTANT DOI_Timeout_P6 : Time

UNITS : NA

EXPECTED_MIN : I s

EXPECTED_MAX : 5 s

END IMPORT

IMPORT CONSTANT GoAboveAction_P6 : ActionType

END IMPORT

IMPORT CONSTANT GoBelowAction_P6 : ActionType

END IMPORT

IMPORT CONSTANT GoAboveHyst_P6 : INTEGER

UNITS : ft

243

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT GoBelowHyst_P6 : INTEGER

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT DOI_MinDelay_P6 : TIME

Purpose : &*L This parameter to the ASW operating module

determines whether or not we will wait to turn the DOI on. If it

is greater than zero, then we will wait. It represents the

minium waiting time L*&

END IMPORT

IMPORT D01_MaxDelay_P6 : TIME

Purpose : &*L This parameter to the ASW operating module

determines the maximk_m waiting time that we will stay in a

Delayed action state before giving up and returning to NoAction

L*&

END IMPORT

END INTERFACE

DEFINITION :

EXPORT CON_D01_P6 :

PARENT : NONE

DEFAULT_VALUE : Uncommanded

TRANSITION Uncommanded TO On IF

TABLE

GoBelowAction = TurnOn : T * ;

ActionBelow_P6.PerformAction_P6 : T * ;

GoAboveAction = TurnOn • * T ;

ActionAbove_P6.PerformAction_P6 : * T ;

END TABLE

TRANSITION Uncommanded TO Off IF

TABLE

GoBelowAction = TurnOff : T* ;

244

ActionBelow_P6.PerformAction_P6 : T * ;

GoAboveAction = TurnOff • * T ;

ActionAbove_P6.PerformAction_P6 : * T ;

END TABLE

TRANSITION On TO Uncommanded IF WHEN(MON_DOI_P6 = On, False)

TRANSITION Off TO Uncommanded IF WHEN(MON_DOI_P6 = Off, False)

END EXPORT

MODULE_INSTANCE ActionBelow_P6 : DOI_Action_P6

PARENT : NONE

ASSIGNMENT

Direction_P6 := Down,

ThresholdedAltitude_P6 := MON_Altitude_P6,

MinDelay_P6 := DOI_MinDelay_P6,

MaxDelay_P6 := DOI_MaxDelay_P6,

AltitudeQuality_P6 := MON_AlitudeQuality_P6,

Action0K_P6 := DOI_Action_0k_P6(),

Clock := Clock

END ASSIGNMENT

END MODULE_INSTANCE

MODULE_INSTANCE ActionAbove_P6 : DOI_Action_P6

PARENT : NONE

ASSIGNMENT

Direction_P6

ThresholdedAltitude_P6

MinDelay_P6

MaxDelay_P6

AltitudeQuality_P6

Action0K_P6

Clock

END ASSIGNMENT

END MODULE_INSTANCE

:= Up,

:= MON_Altitude_P6,

:= DOI MinDelay P6,

:= DOI MaxDelay P6,

:= MON_AlitudeQuality_P6,

:= DOI_Action_Ok F6(),

:= Clock

MACRO DOI_Action_Ok_P6(act IS ActionType)

TABLE

MON_Inhibit_P6 : F F ;

C0N_Failure_P6 : F F ;

MON_DOI_P6 = On : T * ;

act = On : F * ;

MON_DOI_P6 = Off : * T ;

act = Off • * F ;

END TABLE

END MACR0

245

EXPORT C0N_Failure_P6 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS TRUE IF

TABLE

DURATION(Attempting0n() , 0 S, Clock) > DOI_Timeout_P6

DURATION(Attempting0ff(), 0 S, Clock) > DOI_Timeout_P6

DURATION(MON_Altitude_Q uality_P6 = Invalid, 0 S, Clock)

PRE(C0N_Failure_P6) = False

END TABLE

EQUALS FALSE IF

TABLE

DURATION(Attempting0n() , 0 S, Clock) > DOI_Timeout_P6

DURATION(Attempting0ff(), 0 S, Clock) > DOI_Timeout_P6

DURATION(MON_Altitude_Q uality_P6 = Invalid, 0 S, Clock)

PRE(C0N_Failure_P6) = False

END TABLE

END EXPORT

MACRO Attempting0n() :

TABLE

MON_D01_P6 = Off : T ;

CON_DOI_P6 = 0n : T ;

END TABLE

END MACRO

MACRO Attempting0ff() :

TABLE

MON_D01_P6 = On : T ;

CON_DOI_P6 = 0ff : T ;

END TABLE

END MACK0

END DEFINITION

END MODULE

:T***;

:*T**;

:**T*;

"***T;

: F ;

: F ;

: F ;

: F ;

MODULE ThresholdedAltitude _P6 :

INTERFACE :

IMPORT Altitude_P6 : Integer

246

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 50000

END IMPORT

IMPORT CONSTANT Threshold_P6 : Integer

UNITS : ft

EXPECTED_MIN : 0

EXPECTED_MAX : 8024

END IMPORT

IMPORT CONSTANT AboveHysteresis_P6 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

IMPORT CONSTANT BelowHysteresis_P6 : Integer

UNITS : ft

EXPECTED_MIN : 50

EXPECTED_MAX : 500

END IMPORT

EXPORT Result_P6 : AboveBelowType

Purpose : &*L this export reports whether or not the altitude is

above or below the threshold given the hysteresis factor L*&

END EXPORT

END INTERFACE

DEFINITION :

EXPORT Result_P6 :

PARENT : NONE

DEFAULT_VALUE : Above IF

TABLE

DEFINED(Altitude_P6) : T ;

Altitude P5 > Threshold_P5 : T ;

END TABLE

DEFAULT_VALUE : Below IF

TABLE

DEFINED(Altitude_P6) : T ;

Altitude_P6 <= Threshold_P6 : T ;

247

END TABLE

DEFAULT_VALUE : UNDEFINED IF NOT (DEFINED(Altitude_P6))

EQUALS Above IF

TABLE

DEFINED(Altitude_P6) : T ;

Altitude_P6 > EffectiveThreshold_P6 : T ;

END TABLE

EQUALS Below IF

TABLE

DEFINED(Altitude_P6) : T ;

Altitude_P6 <= EffectiveThreshold_P6 : T ;

END TABLE

EQUALS UNDEFINED IF NOT (DEFINED(Altitude_P6))

END EXPORT

STATE_VARIABLE ApplyHisteresis_P6 :

VALUES : {NoHyst, Above, Below}

PARENT : NONE

DEFAULT_VALUE : NoHyst

TRANSITION NoHyst TO Above IF

TABLE

DEFINED(Altitude_P6) : T ;

WHEN(Altitude_P6 < Threshold_P6, False) : T ;

END TABLE

TRANSITION NoHyst TO Below IF

TABLE

DEFINED(Altitude_P6) : T ;

WHEN(Altitude_P6 > Threshold_P6, False) : T ;

END TABLE

TRANSITION Above TO NoHyst IF

TABLE

DEFINED(Altitude_P6) : T T ;

WHEN(Altitude_P6 < Threshold_P6 + AboveHysteresis_P6, False) : T * ;

WHEN(Altitude_P6 > Threshold_P6 - BelowHysteresis_P6, False) : * T ;

END TABLE

TRANSITION Below TO NoHyst IF

248

TABLE

DEFINED(Altitude_P6) : T T ;

WHEN(Altitude_P6 > Threshold_P6 + AboveHysteresis_P6, False) : T * ;

WHEN(Altitude_P6 < Threshold_P6 - BelowHysteresis_P6, False) : • T ;

END TABLE

END STATE_VARIABLE

STATE_VARIABLE EffectiveThreshold_P6 : INTEGER

PARENT : NONE

UNITS : ft

EXPECTED_MIN : Threshold_P6 - BelowHysteresis_P6

EXPECTED_MAX : Threshold_P6 + AboveHysteresis_P6

DEFAULT_VALUE : Threshold_P6

EQUALS Threshold_P6 + AboveHysteresis_P6

IF ApplyHysteresis_P6 = Above

EQUALS Threshold_P6 - BelowHysteresis_P6

IF ApplyHysteresis_P6 = Below

EQUALS Threshold_P6

IF ApplyHysteresis_P6 = NoHyst

END STATE_VARIABLE

END DEFINITION

END MODULE

MODULE DOI_Action_P6 :

INTERFACE :

IMPORT MinDelay_P6 : TIME

END IMPORT

IMPORT MaxDelay_P6 : TIME

END IMPORT

IMPORT CONSTANT Direction_P6 : UpDownType

END IMPORT

IMPORT ThresholdedAltit ude_P6 : AboveBelowType

END IMPORT

249

IMPORT AltitudeQuality_P6 : AltitudeQualityType

END IMPORT

IMPORT ActionOK_P6 : Boolean

END IMPORT

IMPORT Clock : TIME

END IMPORT

EXPORT PerformAction_P6 : Boolean

END EXPORT

END INTERFACE

DEFINITION :

EXPORT PerformAction_P6 :

PARENT : NONE

DEFAULT_VALUE : False

EQUALS WHEN(_internal = Perform)

END EXPORT

STATE_VARIABLE internal_P6 :

VALUES : {NoAction, Delayed, Perform}

PARENT : NONE

DEFAULT_VALUE : NoAction

TRANSITION NoAction TO Delayed IF

TABLE

MinDelay_P6 > 0 S : T T ;

ActionOK_P6 : T T ;

WHEN(ThresholdedAltitud e_P6 = Below) : T * ;

Direction_P6 = Below : T * ;

WHEN(ThresholdedAltitud e_P6 = Above) : * T ;

Direction_P6 = Above • * T ;

END TABLE

TRANSITION NoAction TO Peform IF

TABLE

MinDelay_P6 > 0 S : F F ;

ActionOK_P6 : T T ;

WHEN(ThresholdedAltitud e_P6 = Below) : T * ;

Direction_P6 = Down : T * ;

WHEN(ThresholdedAltitud e_P6 = Above) : * T ;

Direction_P6 = Up • * T ;

END TABLE

250

TRANSITION Delayed TO Perform IF

TABLE

DURATION(PKE(internaI_P 6) IN_STATE Delayed,

0 S, Clock) >= MinDelay_P6 : T T ;

Action0K_P6 : T T ;

AltitudeQuality_P6 = Valid : T T ;

Direction_P6 = Down : T • ;

ThresholdedAltitude_P6 = Below : T • ;

Direction_P6 = Up • • T ;

ThresholdedAltitude_P6 = Above • • T ;

END TABLE

TRANSITION Delayed TO NoAction IF

DURATION(PKE(internaI_P 6) IN_STATE Delayed, 0 S, Clock) >= MaxDelay_P6

TRANSITION Perform TO NoAction IF

DURATION(PRE(internaI_P 6) IN_STATE Perform, 0 S, Clock) >= 0 S

END STATE_VARIABLE

END DEFINITION

END MODULE

INCLUDE "standard-modules. nimbus"

